17 research outputs found

    Durability of Resin-Dentin Bonds to Water- vs. Ethanol-saturated Dentin

    No full text
    Higher 24-hour resin-dentin bond strengths are created when ethanol is used to replace water during wet bonding. This in vitro study examined if ethanol-wet-bonding can increase the durability of resin-dentin bonds over longer times. Five increasingly hydrophilic experimental resin blends were bonded to acid-etched dentin saturated with water or ethanol. Following composite build-ups, the teeth were reduced into beams for 24-hour microtensile bond strength evaluation, and for water-aging at 37°C for 3, 6, or 12 months before additional bond strength measurements. Although most bonds made to water-saturated dentin did not change over time, those made to ethanol-saturated dentin exhibited higher bond strengths, and none of them fell over time. Decreased collagen fibrillar diameter and increased interfibrillar spacing were seen in hybrid layers created with ethanol-wet-bonding. Increases in bond strength and durability in ethanol-wet-bonding may be due to higher resin uptake and better resin sealing of the collagen matrix, thereby minimizing endogenous collagenolytic activities

    Carbodiimide cross-linking inactivates soluble and matrix-bound MMPs, in vitro.

    No full text
    Matrix metalloproteinases (MMPs) cause collagen degradation in hybrid layers created by dentin adhesives. This in vitro study evaluated the feasibility of using a cross-linking agent, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), to inactivate soluble rhMMP-9, as an example of dentin MMPs, and matrix-bound dentin proteases. The inhibitory effects of 5 EDC concentrations (0.01-0.3 M) and 5 incubation times (1-30 min) on soluble rhMMP-9 were screened with an MMP assay kit. The same EDC concentrations were used to evaluate their inhibitory effects on endogenous proteinases from completely demineralized dentin beams that were incubated in simulated body fluid for 30 days. Decreases in modulus of elasticity (E) and dry mass of the beams, and increases in hydroxyproline content of hydrolysates derived from the incubation medium were used as indirect measures of matrix collagen hydrolysis. All EDC concentrations and pre-treatment times inactivated MMP-9 by 98% to 100% (p < 0.05) compared with non-cross-linked controls. Dentin beams incubated in 0.3 M EDC showed only a 9% decrease in E (45% decrease in control), a 3.6% to 5% loss of dry mass (18% loss in control), and significantly less solubilized hydroxyproline when compared with the control without EDC cross-linking (p < 0.05). It is concluded that EDC application for 1 min may be a clinically relevant and effective means for inactivating soluble rhMMP-9 and matrix-bound dentin proteinases if further studies demonstrate that EDC is not toxic to pulpal tissues

    The anti-MMP activity of benzalkonium chloride

    No full text
    This study evaluated the ability of benzalkonium chloride (BAC) to bind to dentine and to inhibit soluble recombinant MMPs and bound dentine matrix metalloproteinases (MMPs). Methods: Dentine powder was prepared from extracted human molars. Half was left mineralized; the other half was completely demineralized. The binding of BAC to dentine powder was followed by measuring changes in the supernatant concentration using UV spectrometry. The inhibitory effects of BAC on rhMMP-2,-8 and-9 were followed using a commercially available in vitro proteolytic assay. Matrix-bound endogenous MMP-activity was evaluated in completely demineralized beams. Each beam was either dipped into BAC and then dropped into 1 mL of a complete medium (CM) or they were placed in 1 mL of CM containing BAC for 30 days. After 30 days, changes in the dry mass of the beams or in the hydroxyproline (HYP) content of hydrolysates of the media were quantitated as indirect measures of matrix collagen hydrolysis by MMPs. Results: Demineralized dentine powder took up 10-times more BAC than did mineralized powder. Water rinsing removed about 50% of the bound BAC, whilst rinsing with 0.5 M NaCl removed more than 90% of the bound BAC. BAC concentrations 0.5 wt% produced 100% inhibition of soluble recombinant MMP-2,-8 or-9, and inhibited matrix-bound MMPs between 55 and 66% when measured as mass loss or 76-81% when measured as solubilization of collagen peptide fragments. Conclusions: BAC is effective at inhibiting both soluble recombinant MMPs and matrix-bound dentine MMPs in the absence of resins.391576

    The effects of ethanol on the size-exclusion characteristics of type i dentin collagen to adhesive resin monomers

    No full text
    During dentin bonding with etch-and-rinse adhesive systems, phosphoric acid etching of mineralized dentin solubilizes the mineral crystallites and replaces them with bound and unbound water. During the infiltration phase of dentin bonding, solvated adhesive resin comonomers are supposed to replace all of the unbound collagen water and polymerize into copolymers. A recently published review suggested that dental monomers are too large to enter and displace water from tightly-packed collagen molecules. Conversely, recent work from the authors' laboratory demonstrated that HEMA and TEGDMA freely equilibrate with water-saturated dentin matrices. However, because adhesive blends are solvated in organic solvents, those solvents may remove enough free water to allow collagen molecules to come close enough to exclude adhesive monomer permeation. The present study analyzed the size-exclusion characteristics of dentin collagen, using a gel permeation-like column chromatography technique, filled with dentin powder instead of Sephadex beads as the stationary phase. The elution volumes of different sized test molecules, including adhesive resin monomers, studied in both water-saturated dentin, and again in ethanol-dehydrated dentin powder, showed that adhesive resin monomers can freely diffuse into both hydrated and dehydrated collagen molecules. Under these in vitro conditions, all free and some of the loosely-bound water seems to have been removed by ethanol. These results validate the concept that adhesive resin monomers can permeate tightly-bound water in ethanol-saturated collagen molecules during infiltration by etch-and-rinse adhesives. Statement of Significance It has been reported that collagen molecules in dentin matrices are packed too close together to allow permeation of adhesive monomers between them. Resin infiltration, in this view, would be limited to extrafibrillar spaces. Our work suggests that monomers equilibrate with collagen water in both water and ethanol-saturated dentin matrices

    The Inhibitory Effects of Quaternary Ammonium Methacrylates on Soluble and Matrix-bound MMPs

    No full text
    Matrix metalloproteinases (MMPs) bound to dentin contribute to the progressive degradation of collagen fibrils in hybrid layers created by dentin adhesives. This study evaluated the MMP-inhibiting potential of quaternary ammonium methacrylates (QAMs), with soluble rhMMP-9 and a matrix-bound endogenous MMP model. Six different QAMs were initially screened by a rhMMP-9 colorimetric assay. For the matrix-bound endogenous MMPs, we aged demineralized dentin beams for 30 days in calcium- and zinc-containing media (CM; control), chlorhexidine, or QAMs in CM to determine the changes in dry mass loss and solubilization of collagen peptides against baseline levels. The inhibitory effects of QAMs on soluble rhMMP-9 varied between 34 and 100%. Beams incubated in CM showed a 29% decrease in dry mass (p < 0.05), whereas beams incubated with QAMs showed only 0.2%-6% loss of dry mass. Significantly more solubilized collagen was detected from beams incubated in CM (p < 0.05). It is concluded that QAMs exhibited dentin MMP inhibition comparable with that of chlorhexidine, but required higher concentrations

    The effects of ethanol on the size-exclusion characteristics of type I dentin collagen to adhesive resin monomers

    No full text
    During dentin bonding with etch-and-rinse adhesive systems, phosphoric acid etching of mineralized dentin solubilizes the mineral crystallites and replaces them with bound and unbound water. During the infiltration phase of dentin bonding, solvated adhesive resin comonomers are supposed to replace all of the unbound collagen water and polymerize into copolymers. A recently published review suggested that dental monomers are too large to enter and displace water from tightly-packed collagen molecules. Conversely, recent work from the authors&apos; laboratory demonstrated that HEMA and TEGDMA freely equilibrate with water-saturated dentin matrices. However, because adhesive blends are solvated in organic solvents, those solvents may remove enough free water to allow collagen molecules to come close enough to exclude adhesive monomer permeation. The present study analyzed the size-exclusion characteristics of dentin collagen, using a gel permeation-like column chromatography technique, filled with dentin powder instead of Sephadex beads as the stationary phase. The elution volumes of different sized test molecules, including adhesive resin monomers, studied in both water saturated dentin, and again in ethanol-dehydrated dentin powder, showed that adhesive resin monomers can freely diffuse into both hydrated and dehydrated collagen molecules. Under these in vitro conditions, all free and some of the loosely-bound water seems to have been removed by ethanol. These results validate the concept that adhesive resin monomers can permeate tightly-bound water in ethanol-saturated collagen molecules during infiltration by etch-and-rinse adhesives. Statement of Significance It has been reported that collagen molecules in dentin matrices are packed too close together to allow permeation of adhesive monomers between them. Resin infiltration, in this view, would be limited to extrafibrillar spaces. Our work suggests that monomers equilibrate with collagen water in both water and ethanol-saturated dentin matrices. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.NIDCR [R01 DE015306]; Sao Paulo Research Foundation - FAPESP [2014/17232-4, 2014/18160-7]SCI(E)[email protected]
    corecore