365 research outputs found

    Reassessing the Formation of CK7 Northwest Africa (NWA) 8186

    Get PDF
    The classification of meteorites is commonly determined using isotopes, modal mineralogy, and bulk compositions [1]. Bulk rare earth elements (REEs) in meteorites are additionally utilized to understand parent body processes. Numerous authors have shown that chondritic groups exhibit REE patterns that may be attributable to their parent bodies [e.g. 2-4], and variations in abundances and concentrations of REEs may reflect early nebular processes, thermal metamorphism, and aqueous alteration on the parent body [5-6]

    Hydrogen Isotopic Composition of Apatite in Northwest Africa 7034: A Record of the "Intermediate" H-Isotopic Reservoir in the Martian Crust?

    Get PDF
    Northwest Africa (NWA) 7034 and its pairings comprise a regolith breccia with a basaltic bulk composition [1] that yields a better match than any other martian meteorite to visible-infrared reflectance spectra of the martian surface measured from orbit [2]. The composition of the fine-grained matrix within NWA 7034 bears a striking resemblance to the major element composition estimated for the martian crust, with several exceptions. The NWA 7034 matrix is depleted in Fe, Ti, and Cr and enriched in Al, Na, and P [3]. The differences in Al and Fe are the most substantial, but the Fe content of NWA 7034 matrix falls within the range reported for the southern highlands crust [6]. It was previously suggested by [4] that NWA 7034 was sourced from the southern highlands based on the ancient 4.4 Ga ages recorded in NWA 7034/7533 zircons [4, 5]. In addition, the NWA 7034 matrix material is enriched in incompatible trace elements by a factor of 1.2-1.5 [7] relative to estimates of the bulk martian crust. The La/Yb ratio of the bulk martian crust is estimated to be approximately 3 [7], and the La/Yb of the NWA 7034 matrix materials ranges from approximately 3.9 to 4.4 [3, 8], indicating a higher degree of LREE enrichment in the NWA 7034 matrix materials. This elevated La/Yb ratio and enrichment in incompatible lithophile trace elements is consistent with NWA 7034 representing a more geochemically enriched crustal terrain than is represented by the bulk martian crust, which would be expected if NWA 7034 represents the bulk crust from the southern highlands. Given the similarities between NWA 7034 and the martian crust, NWA 7034 may represent an important sample for constraining the composition of the martian crust, particularly the ancient highlands. In the present study, we seek to constrain the H isotopic composition of the martian crust using Cl-rich apatite in NWA 7034. Usui et al., [9] recently proposed that a H isotopic reservoir exists within the martian crust that has a H-isotopic composition that is intermediate (D of 1000-2000per mille) between an isotopically light mantle (Delta D is less than 275per mille [10]) and an isotopically heavy atmosphere (D of 2500-6100per mille [11, 12]). Apatites in NWA 7034 occur in a number of lithologic domains, however apatites across all lithologic domains have been affected by a Pb-loss event at about 1.5 Ga before present [5], so they are unlikely to have retained a primary composition and are more likely to have equilibrated with fluids within the martian crust that may or may not have exchanged with the martian atmosphere. Equilibration of apatite with crustal fluids is further supported by the chlorine-rich compositions exhibited by apatites in NWA 7034 in comparison to apatites from other martian meteorites (Figure 1; [13]). Cl is more hydrophilic than F, which promotes formation of Cl-rich apatite compositions in fluid-rich systems [e.g., 14, 15-17]

    H-Isotopic Composition of Apatite in Northwest Africa 7034

    Get PDF
    Northwest Africa (NWA) 7034 and its pairings comprise a regolith breccia with a basaltic bulk composition [1] that yields a better match than any other martian meteorite to estimates of Mars' bulk crust composition [1]. Given the similarities between NWA 7034 and the martian crust, NWA 7034 may represent an important sample for constraining the crustal composition of components that cannot be measured directly by remote sensing. In the present study, we seek to constrain the H isotopic composition of the martian crust using Cl-rich apatite in NWA 7034

    Feldspar Variability in Northwest Africa 7034

    Get PDF
    The martian meteorite Northwest Africa 7034 (and pairings) is a breccia that provides important information about the rocks and processes of the martian crust (e.g., 1-3). Additional information can be gleaned from the components of the breccia. These components, specifically those designated as clasts, record the history of their parent rock (i.e., the rock that has been physically broken down to produce the clasts). In order to study these parent rocks, we must first determine which clasts within the breccia are de-rived from the same parent. Previous studies have be-gun this process (e.g., 4), but the search for genetic linkages between clasts has not integrated clasts with different grain sizes. We begin to take this approach here, incorporating igneous-textured clasts with both fine and coarse mineral grains. In NWA 7034, almost all materials (clasts and breccia matrix) are composed of the same mineral assemblages (feldspar, pyroxene, Fe-Ti oxides, apatite) with largely the same mineral compositions [1, 4-6]. Bulk breccia Sm-Nd systematics define a single isochron [7]. These observations are consistent with a majority of the components within NWA 7034 originating from the same geochemical source and crystallizing at roughly the same time

    Ar-Ar and Rb-Sr Ages of the Tissint Olivine-phyric Martian Shergottite

    Get PDF
    The fifth martian meteorite fall, Tissint, is an olivine-phyric shergottite that contains olivine macrocrysts (approximately 1.5 mm) [1]. [2] reported the Sm-Nd age of Tissint as 596 plus or minus 23 Ma along with Rb-Sr data that defined no isochron. [3] reported Lu-Hf and Sm-Nd ages of 583 plus or minus 86 Ma and 616 plus or minus 67 Ma, respectively. The cosmic-ray exposure ages of Tissint are 1.10 plus or minus 0.15 Ma based on 10Be [4], and 1.0-1.1 Ma, based on 3He, 21Ne, and 38Ar [5,6].We report Ar-Ar ages and Rb-Sr data

    Evaluation of Composite Mesh for Ventral Hernia Repair

    Get PDF
    Composite mesh was associated with minimal intraabdominal adhesions, progressive in-growth of host tissue, and complete degradation of an internal polydioxanone ring that was of assistance in mesh positioning

    Habitable Zones in the Universe

    Full text link
    Habitability varies dramatically with location and time in the universe. This was recognized centuries ago, but it was only in the last few decades that astronomers began to systematize the study of habitability. The introduction of the concept of the habitable zone was key to progress in this area. The habitable zone concept was first applied to the space around a star, now called the Circumstellar Habitable Zone. Recently, other, vastly broader, habitable zones have been proposed. We review the historical development of the concept of habitable zones and the present state of the research. We also suggest ways to make progress on each of the habitable zones and to unify them into a single concept encompassing the entire universe.Comment: 71 pages, 3 figures, 1 table; to be published in Origins of Life and Evolution of Biospheres; table slightly revise

    Wildfire selectivity for land cover type: does size matter ?

    Get PDF
    Previous research has shown that fires burn certain land cover types disproportionally to their abundance. We used quantile regression to study land cover proneness to fire as a function of fire size, under the hypothesis that they are inversely related, for all land cover types. Using five years of fire perimeters, we estimated conditional quantile functions for lower (avoidance) and upper (preference) quantiles of fire selectivity for five land cover types - annual crops, evergreen oak woodlands, eucalypt forests, pine forests and shrublands. The slope of significant regression quantiles describes the rate of change in fire selectivity (avoidance or preference) as a function of fire size. We used Monte-Carlo methods to randomly permutate fires in order to obtain a distribution of fire selectivity due to chance. This distribution was used to test the null hypotheses that 1) mean fire selectivity does not differ from that obtained by randomly relocating observed fire perimeters; 2) that land cover proneness to fire does not vary with fire size. Our results show that land cover proneness to fire is higher for shrublands and pine forests than for annual crops and evergreen oak woodlands. As fire size increases, selectivity decreases for all land cover types tested. Moreover, the rate of change in selectivity with fire size is higher for preference than for avoidance. Comparison between observed and randomized data led us to reject both null hypotheses tested (a = 0.05) and to conclude it is very unlikely the observed values of fire selectivity and change in selectivity with fire size are due to chance.Funding: This paper was supported by the Fundação para a Ciência e Tecnologia Ph.D. Grant SFRH/BD/40398/2007. JMCP participated in this research under the framework of research projects ‘‘Forest fire under climate, social and economic changes in Europe, the Mediterranean and other fire-affected areas of the world (FUME)’’, EC FP7 Grant Agreement No. 243888. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscrip
    • …
    corecore