323 research outputs found

    Microscopic Transport Theory of Nuclear Processes

    Full text link
    We formulate a microscopic theory of the decay of a compound nucleus through fission which generalizes earlier microscopic approaches of fission dynamics performed in the framework of the adiabatic hypothesis. It is based on the constrained Hartree-Fock-Bogoliubov procedure and the Generator Coordinate Method, and requires an effective nucleon-nucleon interaction as the only input quantity. The basic assumption is that the slow evolution of the nuclear shape must be treated explicitely, whereas the rapidly time-dependent intrinsic excitations can be treated by statistical approximations. More precisely, we introduce a reference density which represents the slow evolution of the nuclear shape by a reduced density matrix and the state of intrinsic excitations by a canonical distribution at each given shape of the nucleus. The shape of the nuclear density distribution is described by parameters ("generator coordinates"), not by "superabundant" degrees of freedom introduced in addition to the complete set of nucleonic degrees of freedom. We first derive a rigorous equation of motion for the reference density and, subsequently, simplify this equation on the basis of the Markov approximation. The temperature which appears in the canonical distribution is determined by the requirement that, at each time t, the reference density should correctly reproduce the mean excitation energy at given values of the shape parameters. The resulting equation for the "local" temperature must be solved together with the equations of motion obtained for the reduced density matrix.Comment: 33 pages, accepted in Nucl. Phys.

    Chaotic Scattering in the Regime of Weakly Overlapping Resonances

    Full text link
    We measure the transmission and reflection amplitudes of microwaves in a resonator coupled to two antennas at room temperature in the regime of weakly overlapping resonances and in a frequency range of 3 to 16 GHz. Below 10.1 GHz the resonator simulates a chaotic quantum system. The distribution of the elements of the scattering matrix S is not Gaussian. The Fourier coefficients of S are used for a best fit of the autocorrelation function if S to a theoretical expression based on random--matrix theory. We find very good agreement below but not above 10.1 GHz

    Characterization of Fluctuations of Impedance and Scattering Matrices in Wave Chaotic Scattering

    Full text link
    In wave chaotic scattering, statistical fluctuations of the scattering matrix SS and the impedance matrix ZZ depend both on universal properties and on nonuniversal details of how the scatterer is coupled to external channels. This paper considers the impedance and scattering variance ratios, VRzVR_z and VRsVR_s, where VRz=Var[Zij]/{Var[Zii]Var[Zjj]}1/2VR_z=Var[Z_{ij}]/\{Var[Z_{ii}]Var[Z_{jj}] \}^{1/2}, VRs=Var[Sij]/{Var[Sii]Var[Sjj]}1/2VR_s=Var[S_{ij}]/\{Var[S_{ii}]Var[S_{jj}] \}^{1/2}, and Var[.]Var[.] denotes variance. VRzVR_z is shown to be a universal function of distributed losses within the scatterer. That is, VRzVR_z is independent of nonuniversal coupling details. This contrasts with VRsVR_s for which universality applies only in the large loss limit. Explicit results are given for VRzVR_z for time reversal symmetric and broken time reversal symmetric systems. Experimental tests of the theory are presented using data taken from scattering measurements on a chaotic microwave cavity.Comment: 6 pages, 5 figures, updated with referees' comment

    Single- and double-beta decay Fermi-transitions in an exactly solvable model

    Full text link
    An exactly solvable model suitable for the description of single and double-beta decay processes of the Fermi-type is introduced. The model is equivalent to the exact shell-model treatment of protons and neutrons in a single j-shell. Exact eigenvalues and eigenvectors are compared to those corresponding to the hamiltonian in the quasiparticle basis (qp) and with the results of both the standard quasiparticle random phase approximation (QRPA) and the renormalized one (RQRPA). The role of the scattering term of the quasiparticle hamiltonian is analyzed. The presence of an exact eigenstate with zero energy is shown to be related to the collapse of the QRPA. The RQRPA and the qp solutions do not include this zero-energy eigenvalue in their spectra, probably due to spurious correlations. The meaning of this result in terms of symmetries is presented.Comment: 29 pages, 9 figures included in a Postsript file. Submitted to Physcal Review

    Nuclear Octupole Correlations and the Enhancement of Atomic Time-Reversal Violation

    Get PDF
    We examine the time-reversal-violating nuclear ``Schiff moment'' that induces electric dipole moments in atoms. After presenting a self-contained derivation of the form of the Schiff operator, we show that the distribution of Schiff strength, an important ingredient in the ground-state Schiff moment, is very different from the electric-dipole-strength distribution, with the Schiff moment receiving no strength from the giant dipole resonance in the Goldhaber-Teller model. We then present shell-model calculations in light nuclei that confirm the negligible role of the dipole resonance and show the Schiff strength to be strongly correlated with low-lying octupole strength. Next, we turn to heavy nuclei, examining recent arguments for the strong enhancement of Schiff moments in octupole-deformed nuclei over that of 199Hg, for example. We concur that there is a significant enhancement while pointing to effects neglected in previous work (both in the octupole-deformed nuclides and 199Hg) that may reduce it somewhat, and emphasizing the need for microscopic calculations to resolve the issue. Finally, we show that static octupole deformation is not essential for the development of collective Schiff moments; nuclei with strong octupole vibrations have them as well, and some could be exploited by experiment.Comment: 25 pages, 4 figures embedded in tex

    Signatures of the correlation hole in total and partial cross sections

    Full text link
    In a complex scattering system with few open channels, say a quantum dot with leads, the correlation properties of the poles of the scattering matrix are most directly related to the internal dynamics of the system. We may ask how to extract these properties from an analysis of cross sections. In general this is very difficult, if we leave the domain of isolated resonances. We propose to consider the cross correlation function of two different elastic or total cross sections. For these we can show numerically and to some extent also analytically a significant dependence on the correlations between the scattering poles. The difference between uncorrelated and strongly correlated poles is clearly visible, even for strongly overlapping resonances.Comment: 25 pages, 13 Postscript figures, typos corrected and references adde

    Measuring the Lyapunov exponent using quantum mechanics

    Full text link
    We study the time evolution of two wave packets prepared at the same initial state, but evolving under slightly different Hamiltonians. For chaotic systems, we determine the circumstances that lead to an exponential decay with time of the wave packet overlap function. We show that for sufficiently weak perturbations, the exponential decay follows a Fermi golden rule, while by making the difference between the two Hamiltonians larger, the characteristic exponential decay time becomes the Lyapunov exponent of the classical system. We illustrate our theoretical findings by investigating numerically the overlap decay function of a two-dimensional dynamical system.Comment: 9 pages, 6 figure

    Strain-induced partially flat band, helical snake states, and interface superconductivity in topological crystalline insulators

    Get PDF
    Topological crystalline insulators in IV-VI compounds host novel topological surface states consisting of multi-valley massless Dirac fermions at low energy. Here we show that strain generically acts as an effective gauge field on these Dirac fermions and creates pseudo-Landau orbitals without breaking time-reversal symmetry. We predict the realization of this phenomenon in IV-VI semiconductor heterostructures, due to a naturally occurring misfit dislocation array at the interface that produces a periodically varying strain field. Remarkably, the zero-energy Landau orbitals form a flat band in the vicinity of the Dirac point, and coexist with a network of snake states at higher energy. We propose that the high density of states of this flat band gives rise to interface superconductivity observed in IV-VI semiconductor multilayers at unusually high temperatures, with non-BCS behavior. Our work demonstrates a new route to altering macroscopic electronic properties to achieve a partially flat band, and paves the way for realizing novel correlated states of matter.Comment: Accepted by Nature Physic

    Pesticide Leaching from Agricultural Fields with Ridges and Furrows

    Get PDF
    In the evaluation of the risk of pesticide leaching to groundwater, the soil surface is usually assumed to be level, although important crops like potato are grown on ridges. A fraction of the water from rainfall and sprinkler irrigation may flow along the soil surface from the ridges to the furrows, thus bringing about an extra load of water and pesticide on the furrow soil. A survey of the literature reveals that surface-runoff from ridges to furrows is a well-known phenomenon but that hardly any data are available on the quantities of water and pesticide involved. On the basis of a field experiment with additional sprinkler irrigation, computer simulations were carried out with the Pesticide Emission Assessment at Regional and Local scales model for separate ridge and furrow systems in a humic sandy potato field. Breakthrough curves of bromide ion (as a tracer for water flow) and carbofuran (as example pesticide) were calculated for 1-m depth in the field. Bromide ion leached comparatively fast from the furrow system, while leaching from the ridge system was slower showing a maximum concentration of about half of that for the furrow system. Carbofuran breakthrough from the furrow system began about a month after application and increased steadily to substantial concentrations. Because the transport time of carbofuran in the ridge soil was much longer, no breakthrough occurred in the growing season. The maximum concentration of carbofuran leaching from the ridge–furrow field was computed to be a factor of six times as high as that computed for the corresponding level field. The study shows that the risk of leaching of pesticides via the furrow soil can be substantially higher than that via the corresponding level field soil
    • …
    corecore