14,522 research outputs found

    Optical generation of hybrid entangled state via entangling single-photon-added coherent state

    Full text link
    We propose a feasible scheme to realize the optical entanglement of single-photon-added coherent state (SPACS) and show that, besides the Sanders entangled coherent state, the entangled SPACS also leads to new forms of hybrid entanglement of quantum Fock state and classical coherent state. We probe the essential difference of two types of hybrid entangled state (HES). This HES provides a novel link between the discrete- and the continuous-variable entanglement in a natural way.Comment: 6 pages, 2 figure

    Minimum-weight designs for hat-stiffened composite panels under uniaxial compression

    Get PDF
    Optimum hat-stiffened compression panel designs are determined by a structural synthesis technique. The effects of simplifying assumptions made in the buckling analysis for the optimization program are investigated by a linked plate element program. Optimization results for hat-stiffened graphite-epoxy panels show a 50-percent weight savings over optimized aluminum panels. Composite panels are shown to possess a variety of proportions at nearly constant weight

    Mass-Gaps and Spin Chains for (Super) Membranes

    Get PDF
    We present a method for computing the non-perturbative mass-gap in the theory of Bosonic membranes in flat background spacetimes with or without background fluxes. The computation of mass-gaps is carried out using a matrix regularization of the membrane Hamiltonians. The mass gap is shown to be naturally organized as an expansion in a 'hidden' parameter, which turns out to be 1d\frac{1}{d}: d being the related to the dimensionality of the background space. We then proceed to develop a large NN perturbation theory for the membrane/matrix-model Hamiltonians around the quantum/mass corrected effective potential. The same parameter that controls the perturbation theory for the mass gap is also shown to control the Hamiltonian perturbation theory around the effective potential. The large NN perturbation theory is then translated into the language of quantum spin chains and the one loop spectra of various Bosonic matrix models are computed by applying the Bethe ansatz to the one-loop effective Hamiltonians for membranes in flat space times. Apart from membranes in flat spacetimes, the recently proposed matrix models (hep-th/0607005) for non-critical membranes in plane wave type spacetimes are also analyzed within the paradigm of quantum spin chains and the Bosonic sectors of all the models proposed in (hep-th/0607005) are diagonalized at the one-loop level.Comment: 36 Page

    Enhancement of Cavity Cooling of a Micromechanical Mirror Using Parametric Interactions

    Get PDF
    It is shown that an optical parametric amplifier inside a cavity can considerably improve the cooling of the micromechanical mirror by radiation pressure. The micromechanical mirror can be cooled from room temperature 300 K to sub-Kelvin temperatures, which is much lower than what is achievable in the absence of the parametric amplifier. Further if in case of a precooled mirror one can reach millikelvin temperatures starting with about 1 K. Our work demonstrates the fundamental dependence of radiation pressure effects on photon statistics.Comment: 14 pages, 7 figure

    Strong-driving-assisted multipartite entanglement in cavity QED

    Get PDF
    We propose a method of generating multipartite entanglement by considering the interaction of a system of N two-level atoms in a cavity of high quality factor with a strong classical driving field. It is shown that, with a judicious choice of the cavity detuning and the applied coherent field detuning, vacuum Rabi coupling produces a large number of important multipartite entangled states. It is even possible to produce entangled states involving different cavity modes. Tuning of parameters also permits us to switch from Jaynes-Cummings to anti-Jaynes-Cummings like interaction.Comment: Last version with minor changes and added references. Accepted for publication in Phys. Rev. Letter

    Wigner functions, squeezing properties and slow decoherence of atomic Schrodinger cats

    Full text link
    We consider a class of states in an ensemble of two-level atoms: a superposition of two distinct atomic coherent states, which can be regarded as atomic analogues of the states usually called Schrodinger cat states in quantum optics. According to the relation of the constituents we define polar and nonpolar cat states. The properties of these are investigated by the aid of the spherical Wigner function. We show that nonpolar cat states generally exhibit squeezing, the measure of which depends on the separation of the components of the cat, and also on the number of the constituent atoms. By solving the master equation for the polar cat state embedded in an external environment, we determine the characteristic times of decoherence, dissipation and also the characteristic time of a new parameter, the non-classicality of the state. This latter one is introduced by the help of the Wigner function, which is used also to visualize the process. The dependence of the characteristic times on the number of atoms of the cat and on the temperature of the environment shows that the decoherence of polar cat states is surprisingly slow.Comment: RevTeX, 14 pages including 8 PostScript figures. High quality versions of Figures 1, 3, 5, 7 and 8 are available at http://www.jate.u-szeged.hu/~benedict/asc_figures.html . (Submitted to Physical Review A: March 26, 1999.

    A Fresh Approach to the Study of Atmosphere Turbidity

    Get PDF
    The problem of assessment of atmospheric turbidity caused by aerosol particles, viz., dust, smoke, haze, and other atmospheric pollutants, apart from the effect of variable water vapour content of the atmosphere, has been studied afresh. The basic concept underlying Linke's turbidity factor, T has been found to be theoretically sound, although its quantitative formulation suffers from one major defect, viz, its 'virtual variation' with air mass. This error has been traced to defective formulation of the quantitative expression for T. A 'Rational turbidity factor', Tr, has been proposed which is likely to overcome the limitations of Linke's turbidity factor, T. A nomogram has been development for quick evaluation of Tr, and the effect of altitude has also been considered

    The politics of negotiation and implementation: A reciprocal water access agreement in the Himalayan foothills, India

    Get PDF
    In this paper, we examine the on-the-ground realities of upstream-downstream negotiations and transactions over ecosystem services. We explore the engagement, negotiation, implementation, and postimplementation phases of a “reciprocal water access” (RWA) agreement between village communities and municipal water users at Palampur, Himachal Pradesh, India. We aim to highlight how external actors drove the payments for ecosystem services agenda through a series of facilitation and research engagements, which were pivotal to the RWA’s adoption, and how the agreement fared once external agents withdrew. In the postimplementation period, the RWA agreement continues to be upheld by upstream communities amidst evolving, competing land-use changes and claims. The introduction of cash payments for environmental services for forest-water relationships has given rise to multifaceted difficulties for the upstream hamlets, which has impeded the functionality of their forest management committee. Upstream communities’ formal rights and abilities to control and manage their resources are dynamic and need strengthening and assurance; these developments result in fluctuating transaction and opportunity costs not originally envisaged by the RWA agreement. The paper demonstrates the importance of an explicit understanding of the local politics of negotiation and implementation to determine the effectiveness of compensation-based mechanisms for the supply of ecosystem services.Natural Environment Research CouncilThis is the final version of the article. It first appeared from Resilience Alliance via http://dx.doi.org/10.5751/ES-08462-21023

    The Complexity of Separating Points in the Plane

    Get PDF
    We study the following separation problem: given n connected curves and two points s and t in the plane, compute the minimum number of curves one needs to retain so that any path connecting s to t intersects some of the retained curves. We give the first polynomial (O(n3)) time algorithm for the problem, assuming that the curves have reasonable computational properties. The algorithm is based on considering the intersection graph of the curves, defining an appropriate family of closed walks in the intersection graph that satisfies the 3-path-condition, and arguing that a shortest cycle in the family gives an optimal solution. The 3-path-condition has been used mainly in topological graph theory, and thus its use here makes the connection to topology clear. We also show that the generalized version, where several input points are to be separated, is NP-hard for natural families of curves, like segments in two directions or unit circles
    • …
    corecore