207 research outputs found
Dome C site testing: surface layer, free atmosphere seeing and isoplanatic angle statistics
This paper analyses 3.5 years of site testing data obtained at Dome C,
Antarctica, based on measurements obtained with three DIMMs located at three
different elevations. Basic statistics of the seeing and the isoplanatic angle
are given, as well as the characteristic time of temporal fluctuations of these
two parameters, which we found to around 30 minutes at 8 m. The 3 DIMMs are
exploited as a profiler of the surface layer, and provide a robust estimation
of its statistical properties. It appears to have a very sharp upper limit
(less than 1 m). The fraction of time spent by each telescope above the top of
the surface layer permits us to deduce a median height of between 23 m and 27
m. The comparison of the different data sets led us to infer the statistical
properties of the free atmosphere seeing, with a median value of 0.36 arcsec.
The C_n^2 profile inside the surface layer is also deduced from the seeing data
obtained during the fraction of time spent by the 3 telescopes inside this
turbulence. Statistically, the surface layer, except during the 3-month summer
season, contributes to 95 percent of the total turbulence from the surface
level, thus confirming the exceptional quality of the site above it
Photometric quality of Dome C for the winter 2008 from ASTEP South
ASTEP South is an Antarctic Search for Transiting Exo- Planets in the South
pole field, from the Concordia station, Dome C, Antarctica. The instrument
consists of a thermalized 10 cm refractor observing a fixed 3.88\degree x
3.88\degree field of view to perform photometry of several thousand stars at
visible wavelengths (700-900 nm). The first winter campaign in 2008 led to the
retrieval of nearly 1600 hours of data. We derive the fraction of photometric
nights by measuring the number of detectable stars in the field. The method is
sensitive to the presence of small cirrus clouds which are invisible to the
naked eye. The fraction of night-time for which at least 50% of the stars are
detected is 74% from June to September 2008. Most of the lost time (18.5% out
of 26%) is due to periods of bad weather conditions lasting for a few days
("white outs"). Extended periods of clear weather exist. For example, between
July 10 and August 10, 2008, the total fraction of time (day+night) for which
photometric observations were possible was 60%. This confirms the very high
quality of Dome C for nearly continuous photometric observations during the
Antarctic winter
Bœuf (Préhistoire)
De nombreuses études avaient, tout au long du xixe siècle, décrit et nommé de multiples espèces ou sous-espèces de Bos. Sanson, par exemple, en dénombrait douze dans les seuls taurins. Au xxe siècle, une révision se fit : la Nomenclature en vigueur ne retient dans le sous-genre Bos, pour les animaux actuels, que trois sous-espèces (ou « types ») : le bœuf à bosse, B. indicus et deux types de « taurins », sans bosse : le B. primigenius ou bœuf à longues cornes (le longhorn) et le B. brachycero..
The secondary eclipses of WASP-19b as seen by the ASTEP 400 telescope from Antarctica
The ASTEP (Antarctica Search for Transiting ExoPlanets) program was
originally aimed at probing the quality of the Dome C, Antarctica for the
discovery and characterization of exoplanets by photometry. In the first year
of operation of the 40 cm ASTEP 400 telescope (austral winter 2010), we
targeted the known transiting planet WASP-19b in order to try to detect its
secondary transits in the visible. This is made possible by the excellent
sub-millimagnitude precision of the binned data. The WASP-19 system was
observed during 24 nights in May 2010. The photometric variability level due to
starspots is about 1.8% (peak-to-peak), in line with the SuperWASP data from
2007 (1.4%) and larger than in 2008 (0.07%). We find a rotation period of
WASP-19 of 10.7 +/- 0.5 days, in agreement with the SuperWASP determination of
10.5 +/- 0.2 days. Theoretical models show that this can only be explained if
tidal dissipation in the star is weak, i.e. the tidal dissipation factor Q'star
> 3.10^7. Separately, we find evidence for a secondary eclipse of depth 390 +/-
190 ppm with a 2.0 sigma significance, a phase consistent with a circular orbit
and a 3% false positive probability. Given the wavelength range of the
observations (420 to 950 nm), the secondary transit depth translates into a day
side brightness temperature of 2690(-220/+150) K, in line with measurements in
the z' and K bands. The day side emission observed in the visible could be due
either to thermal emission of an extremely hot day side with very little
redistribution of heat to the night side, or to direct reflection of stellar
light with a maximum geometrical albedo Ag=0.27 +/- 0.13. We also report a
low-frequency oscillation well in phase at the planet orbital period, but with
a lower-limit amplitude that could not be attributed to the planet phase alone,
and possibly contaminated with residual lightcurve trends.Comment: Accepted for publication in Astronomy and Astrophysics, 13 pages, 13
figure
ASTEP South: An Antarctic Search for Transiting ExoPlanets around the celestial South pole
ASTEP South is the first phase of the ASTEP project (Antarctic Search for
Transiting ExoPlanets). The instrument is a fixed 10 cm refractor with a 4kx4k
CCD camera in a thermalized box, pointing continuously a 3.88 degree x 3.88
degree field of view centered on the celestial South pole. ASTEP South became
fully functional in June 2008 and obtained 1592 hours of data during the 2008
Antarctic winter. The data are of good quality but the analysis has to account
for changes in the point spread function due to rapid ground seeing variations
and instrumental effects. The pointing direction is stable within 10 arcseconds
on a daily timescale and drifts by only 34 arcseconds in 50 days. A truly
continuous photometry of bright stars is possible in June (the noon sky
background peaks at a magnitude R=15 arcsec-2 on June 22), but becomes
challenging in July (the noon sky background magnitude is R=12.5 arcsec?2 on
July 20). The weather conditions are estimated from the number of stars
detected in the field. For the 2008 winter, the statistics are between 56.3 %
and 68.4 % of excellent weather, 17.9 % to 30 % of veiled weather and 13.7 % of
bad weather. Using these results in a probabilistic analysis of transit
detection, we show that the detection efficiency of transiting exoplanets in
one given field is improved at Dome C compared to a temperate site such as La
Silla. For example we estimate that a year-long campaign of 10 cm refractor
could reach an efficiency of 69 % at Dome C versus 45 % at La Silla for
detecting 2-day period giant planets around target stars from magnitude 10 to
15. This shows the high potential of Dome C for photometry and future planet
discoveries. [Short abstract
Small body harvest with the Antarctic Search for Transiting Exoplanets (ASTEP) project
Small Solar system bodies serve as pristine records that have been minimally
altered since their formation. Their observations provide valuable information
regarding the formation and evolution of our Solar system. Interstellar objects
(ISOs) can also provide insight on the formation of exoplanetary systems and
planetary system evolution as a whole. In this work, we present the application
of our framework to search for small Solar system bodies in exoplanet transit
survey data collected by the Antarctic Search for Transiting ExoPlanets (ASTEP)
project. We analysed data collected during the Austral winter of 2021 by the
ASTEP 400 telescope located at the Concordia Station, at Dome C, Antarctica. We
identified 20 known objects from dynamical classes ranging from Inner Main-belt
asteroids to one comet. Our search recovered known objects down to a magnitude
of = 20.4 mag, with a retrieval rate of 80% for objects with
20 mag. Future work will apply the pipeline to archival ASTEP data that
observed fields for periods of longer than a few hours to treat them as
deep-drilling datasets and reach fainter limiting magnitudes for slow-moving
objects, on the order of 23-24 mag.Comment: Accepted for publication in MNRAS (Monthly Notices of the Royal
Astronomical Society), 9 pages, 8 figure
Direct constraint on the distance of y2 Velorum from AMBER/VLTI observations
In this work, we present the first AMBER observations, of the Wolf-Rayet and
O (WR+O) star binary system y2 Velorum. The AMBER instrument was used with the
telescopes UT2, UT3, and UT4 on baselines ranging from 46m to 85m. It delivered
spectrally dispersed visibilities, as well as differential and closure phases,
with a resolution R = 1500 in the spectral band 1.95-2.17 micron. We interpret
these data in the context of a binary system with unresolved components,
neglecting in a first approximation the wind-wind collision zone flux
contribution. We show that the AMBER observables result primarily from the
contribution of the individual components of the WR+O binary system. We discuss
several interpretations of the residuals, and speculate on the detection of an
additional continuum component, originating from the free-free emission
associated with the wind-wind collision zone (WWCZ), and contributing at most
to the observed K-band flux at the 5% level. The expected absolute separation
and position angle at the time of observations were 5.1±0.9mas and
66±15° respectively. However, we infer a separation of
3.62+0.11-0.30 mas and a position angle of 73+9-11°. Our analysis thus
implies that the binary system lies at a distance of 368+38-13 pc, in agreement
with recent spectrophotometric estimates, but significantly larger than the
Hipparcos value of 258+41-31 pc
- …