475 research outputs found

    Atomic frequency comb memory with spin wave storage in 153Eu3+:Y2SiO5

    Full text link
    153Eu3+:Y2SiO5 is a very attractive candidate for a long lived, multimode quantum memory due to the long spin coherence time (~15 ms), the relatively large hyperfine splitting (100 MHz) and the narrow optical homogeneous linewidth (~100 Hz). Here we show an atomic frequency comb memory with spin wave storage in a promising material 153Eu3+:Y2SiO5, reaching storage times slightly beyond 10 {\mu}s. We analyze the efficiency of the storage process and discuss ways of improving it. We also measure the inhomogeneous spin linewidth of 153Eu3+:Y2SiO5, which we find to be 69 \pm 3 kHz. These results represent a further step towards realising a long lived multi mode solid state quantum memory.Comment: 7 pages and 7 figure

    Electric control of collective atomic coherence in an Erbium doped solid

    Full text link
    We demonstrate fast and accurate control of the evolution of collective atomic coherences in an Erbium doped solid using external electric fields. This is achieved by controlling the inhomogeneous broadening of Erbium ions emitting at 1536 nm using an electric field gradient and the linear Stark effect. The manipulation of atomic coherence is characterized with the collective spontaneous emission (optical free induction decay) emitted by the sample after an optical excitation, which does not require any previous preparation of the atoms. We show that controlled dephasing and rephasing of the atoms by the electric field result in collapses and revivals of the optical free induction decay. Our results show that the use of external electric fields does not introduce any substantial additional decoherence and enables the manipulation of collective atomic coherence with a very high degree of precision on the time scale of tens of ns. This provides an interesting resource for photonic quantum state storage and quantum state manipulation.Comment: 10 pages, 5 figure

    Quantum storage of polarization qubits in birefringent and anisotropically absorbing materials

    Full text link
    Storage of quantum information encoded into true single photons is an essential constituent of long-distance quantum communication based on quantum repeaters and of optical quantum information processing. The storage of photonic polarization qubits is, however, complicated by the fact that many materials are birefringent and have polarization-dependent absorption. Here we present and demonstrate a simple scheme that allows compensating for these polarization effects. The scheme is demonstrated using a solid-state quantum memory implemented with an ensemble of rare-earth ions doped into a biaxial yttrium orthosilicate (Y2SiO5Y_2SiO_5) crystal. Heralded single photons generated from a filtered spontaneous parametric downconversion source are stored, and quantum state tomography of the retrieved polarization state reveals an average fidelity of 97.5±0.497.5 \pm 0.4%, which is significantly higher than what is achievable with a measure-and-prepare strategy.Comment: 7 pages, 3 figures, 1 table, corrected typos and added ref. 3

    Heralded quantum entanglement between two crystals

    Full text link
    Quantum networks require the crucial ability to entangle quantum nodes. A prominent example is the quantum repeater which allows overcoming the distance barrier of direct transmission of single photons, provided remote quantum memories can be entangled in a heralded fashion. Here we report the observation of heralded entanglement between two ensembles of rare-earth-ions doped into separate crystals. A heralded single photon is sent through a 50/50 beamsplitter, creating a single-photon entangled state delocalized between two spatial modes. The quantum state of each mode is subsequently mapped onto a crystal, leading to an entangled state consisting of a single collective excitation delocalized between two crystals. This entanglement is revealed by mapping it back to optical modes and by estimating the concurrence of the retrieved light state. Our results highlight the potential of rare-earth-ions doped crystals for entangled quantum nodes and bring quantum networks based on solid-state resources one step closer.Comment: 10 pages, 5 figure

    Towards an eficient atomic frequency comb quantum memory

    Full text link
    We present an efficient photon-echo experiment based on atomic frequency combs [Phys. Rev. A 79, 052329 (2009)]. Echoes containing an energy of up to 35% of that of the input pulse are observed in a Pr3+-doped Y2SiO5 crystal. This material allows for the precise spectral holeburning needed to make a sharp and highly absorbing comb structure. We compare our results with a simple theoretical model with satisfactory agreement. Our results show that atomic frequency combs has the potential for high-efficiency storage of single photons as required in future long-distance communication based on quantum repeaters.Comment: 10 pages, 5 figure

    Device-independent quantum key distribution secure against collective attacks

    Full text link
    Device-independent quantum key distribution (DIQKD) represents a relaxation of the security assumptions made in usual quantum key distribution (QKD). As in usual QKD, the security of DIQKD follows from the laws of quantum physics, but contrary to usual QKD, it does not rely on any assumptions about the internal working of the quantum devices used in the protocol. We present here in detail the security proof for a DIQKD protocol introduced in [Phys. Rev. Lett. 98, 230501 (2008)]. This proof exploits the full structure of quantum theory (as opposed to other proofs that exploit the no-signalling principle only), but only holds again collective attacks, where the eavesdropper is assumed to act on the quantum systems of the honest parties independently and identically at each round of the protocol (although she can act coherently on her systems at any time). The security of any DIQKD protocol necessarily relies on the violation of a Bell inequality. We discuss the issue of loopholes in Bell experiments in this context.Comment: 25 pages, 3 figure

    Towards high-speed optical quantum memories

    Full text link
    Quantum memories, capable of controllably storing and releasing a photon, are a crucial component for quantum computers and quantum communications. So far, quantum memories have operated with bandwidths that limit data rates to MHz. Here we report the coherent storage and retrieval of sub-nanosecond low intensity light pulses with spectral bandwidths exceeding 1 GHz in cesium vapor. The novel memory interaction takes place via a far off-resonant two-photon transition in which the memory bandwidth is dynamically generated by a strong control field. This allows for an increase in data rates by a factor of almost 1000 compared to existing quantum memories. The memory works with a total efficiency of 15% and its coherence is demonstrated by directly interfering the stored and retrieved pulses. Coherence times in hot atomic vapors are on the order of microsecond - the expected storage time limit for this memory.Comment: 13 pages, 5 figure

    A solid state light-matter interface at the single photon level

    Full text link
    Coherent and reversible mapping of quantum information between light and matter is an important experimental challenge in quantum information science. In particular, it is a decisive milestone for the implementation of quantum networks and quantum repeaters. So far, quantum interfaces between light and atoms have been demonstrated with atomic gases, and with single trapped atoms in cavities. Here we demonstrate the coherent and reversible mapping of a light field with less than one photon per pulse onto an ensemble of 10 millions atoms naturally trapped in a solid. This is achieved by coherently absorbing the light field in a suitably prepared solid state atomic medium. The state of the light is mapped onto collective atomic excitations on an optical transition and stored for a pre-programmed time up of to 1 mu s before being released in a well defined spatio-temporal mode as a result of a collective interference. The coherence of the process is verified by performing an interference experiment with two stored weak pulses with a variable phase relation. Visibilities of more than 95% are obtained, which demonstrates the high coherence of the mapping process at the single photon level. In addition, we show experimentally that our interface allows one to store and retrieve light fields in multiple temporal modes. Our results represent the first observation of collective enhancement at the single photon level in a solid and open the way to multimode solid state quantum memories as a promising alternative to atomic gases.Comment: 5 pages, 5 figures, version submitted on June 27 200

    Photonic quantum state transfer between a cold atomic gas and a crystal

    Full text link
    Interfacing fundamentally different quantum systems is key to build future hybrid quantum networks. Such heterogeneous networks offer superior capabilities compared to their homogeneous counterparts as they merge individual advantages of disparate quantum nodes in a single network architecture. However, only very few investigations on optical hybrid-interconnections have been carried out due to the high fundamental and technological challenges, which involve e.g. wavelength and bandwidth matching of the interfacing photons. Here we report the first optical quantum interconnection between two disparate matter quantum systems with photon storage capabilities. We show that a quantum state can be faithfully transferred between a cold atomic ensemble and a rare-earth doped crystal via a single photon at telecommunication wavelength, using cascaded quantum frequency conversion. We first demonstrate that quantum correlations between a photon and a single collective spin excitation in the cold atomic ensemble can be transferred onto the solid-state system. We also show that single-photon time-bin qubits generated in the cold atomic ensemble can be converted, stored and retrieved from the crystal with a conditional qubit fidelity of more than 85%85\%. Our results open prospects to optically connect quantum nodes with different capabilities and represent an important step towards the realization of large-scale hybrid quantum networks

    Generic flow profiles induced by a beating cilium

    Full text link
    We describe a multipole expansion for the low Reynolds number fluid flows generated by a localized source embedded in a plane with a no-slip boundary condition. It contains 3 independent terms that fall quadratically with the distance and 6 terms that fall with the third power. Within this framework we discuss the flows induced by a beating cilium described in different ways: a small particle circling on an elliptical trajectory, a thin rod and a general ciliary beating pattern. We identify the flow modes present based on the symmetry properties of the ciliary beat.Comment: 12 pages, 6 figures, to appear in EPJ
    corecore