926 research outputs found
Synthesis of neural networks for spatio-temporal spike pattern recognition and processing
The advent of large scale neural computational platforms has highlighted the
lack of algorithms for synthesis of neural structures to perform predefined
cognitive tasks. The Neural Engineering Framework offers one such synthesis,
but it is most effective for a spike rate representation of neural information,
and it requires a large number of neurons to implement simple functions. We
describe a neural network synthesis method that generates synaptic connectivity
for neurons which process time-encoded neural signals, and which makes very
sparse use of neurons. The method allows the user to specify, arbitrarily,
neuronal characteristics such as axonal and dendritic delays, and synaptic
transfer functions, and then solves for the optimal input-output relationship
using computed dendritic weights. The method may be used for batch or online
learning and has an extremely fast optimization process. We demonstrate its use
in generating a network to recognize speech which is sparsely encoded as spike
times.Comment: In submission to Frontiers in Neuromorphic Engineerin
Creep in oak material from the Vasa ship: verification of linear viscoelasticity and identification of stress thresholds
Creep deformation is a general problem for large wooden structures, and in particular for shipwrecks in museums. In this study, experimental creep data on the wooden cubic samples from the Vasa ship have been analysed to confirm the linearity of the viscoelastic response in the directions where creep was detectable (T and R directions). Isochronous stress-strain curves were derived for relevant uniaxial compressive stresses within reasonable time spans. These curves and the associated creep compliance values justify that it is reasonable to assume a linear viscoelastic behaviour within the tested ranges, given the high degree of general variability. Furthermore, the creep curves were fitted with a one-dimensional standard linear solid model, and although the rheological parameters show a fair amount of scatter, they are candidates as input parameters in a numerical model to predict creep deformations. The isochronous stress-strain relationships were used to define a creep threshold stress below which only negligible creep is expected. These thresholds ranges were 0.3-0.5 MPa in the R direction and 0.05-0.2 MPa in the T direction
Interacting spin-2 fields in three dimensions
Using the frame formulation of multi-gravity in three dimensions, we show
that demanding the presence of secondary constraints which remove the
Boulware-Deser ghosts restricts the possible interaction terms of the theory
and identifies invertible frame field combinations whose effective metric may
consistently couple to matter. The resulting ghost-free theories can be
represented by theory graphs which are trees. In the case of three frame
fields, we explicitly show that the requirement of positive masses and energies
for the bulk spin-2 modes in AdS is consistent with a positive central
charge for the putative dual CFT.Comment: 26 pages, 3 figures, v2: minor changes, matches published versio
Covariant coarse-graining of inhomogeneous dust flow in General Relativity
A new definition of coarse-grained quantities describing the dust flow in
General Relativity is proposed. It assigns the coarse--grained expansion, shear
and vorticity to finite-size comoving domains of fluid in a covariant,
coordinate-independent manner. The coarse--grained quantities are all
quasi-local functionals, depending only on the geometry of the boundary of the
considered domain. They can be thought of as relativistic generalizations of
simple volume averages of local quantities in a flat space. The procedure is
based on the isometric embedding theorem for S^2 surfaces and thus requires the
boundary of the domain in question to have spherical topology and positive
scalar curvature. We prove that in the limit of infinitesimally small volume
the proposed quantities reproduce the local expansion, shear and vorticity. In
case of irrotational flow we derive the time evolution for the coarse-grained
quantities and show that its structure is very similar to the evolution
equation for their local counterparts. Additional terms appearing in it may
serve as a measure of the backreacton of small-scale inhomogeneities of the
flow on the large-scale motion of the fluid inside the domain and therefore the
result may be interesting in the context of the cosmological backreaction
problem. We also consider the application of the proposed coarse-graining
procedure to a number of known exact solutions of Einstein equations with dust
and show that it yields reasonable results.Comment: 17 pages, 5 figures. Version accepted in Classical and Quantum
Gravity
Paraneoplastic thrombocytosis in ovarian cancer
<p>Background: The mechanisms of paraneoplastic thrombocytosis in ovarian cancer and the role that
platelets play in abetting cancer growth are unclear.</p>
<p>Methods: We analyzed clinical data on 619 patients with epithelial ovarian cancer to test associations between platelet counts and disease outcome. Human samples and mouse
models of epithelial ovarian cancer were used to explore the underlying mechanisms
of paraneoplastic thrombocytosis. The effects of platelets on tumor growth and angiogenesis were ascertained.</p>
<p>Results: Thrombocytosis was significantly associated with advanced disease and shortened
survival. Plasma levels of thrombopoietin and interleukin-6 were significantly elevated
in patients who had thrombocytosis as compared with those who did not. In mouse
models, increased hepatic thrombopoietin synthesis in response to tumor-derived
interleukin-6 was an underlying mechanism of paraneoplastic thrombocytosis. Tumorderived interleukin-6 and hepatic thrombopoietin were also linked to thrombocytosis
in patients. Silencing thrombopoietin and interleukin-6 abrogated thrombocytosis in
tumor-bearing mice. Antiâinterleukin-6 antibody treatment significantly reduced platelet counts in tumor-bearing mice and in patients with epithelial ovarian cancer. In
addition, neutralizing interleukin-6 significantly enhanced the therapeutic efficacy of
paclitaxel in mouse models of epithelial ovarian cancer. The use of an antiplatelet
antibody to halve platelet counts in tumor-bearing mice significantly reduced tumor
growth and angiogenesis.</p>
<p>Conclusions: These findings support the existence of a paracrine circuit wherein increased production of thrombopoietic cytokines in tumor and host tissue leads to paraneoplastic
thrombocytosis, which fuels tumor growth. We speculate that countering paraneoplastic thrombocytosis either directly or indirectly by targeting these cytokines may have
therapeutic potential. </p>
The evolution of seafloor spreading behind the tip of the westward propagating Cocos-Nazca spreading center
Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 21(6), (2020): e2020GC008957, doi:10.1029/2020GC008957.At the Galapagos triple junction in the equatorial Pacific Ocean, the CocosâNazca spreading center does not meet the East Pacific Rise (EPR) but, instead, rifts into 0.4 Myrâold lithosphere on the EPR flank. Westward propagation of CocosâNazca spreading forms the Vâshaped Galapagos gore. Since ~1.4 Ma, opening at the active gore tip has been within the CocosâGalapagos microplate spreading regime. In this paper, bathymetry, magnetic, and gravity data collected over the first 400 km east of the gore tip are used to examine rifting of young lithosphere and transition to magmatic spreading segments. From inception, the axis shows structural segmentation consisting of rifted basins whose bounding faults eventually mark the gore edges. Rifting progresses to magmatic spreading over the first three segments (s1âs3), which open between CocosâGalapagos microplate at the presently slow rates of ~19â29 mm/year. Segments s4âs9 originated in the fasterâspreading (~48 mm/year) CocosâNazca regime, and wellâdefined magnetic anomalies and abyssal hill fabric close to the gore edges show the transition to full magmatic spreading was more rapid than at present time. Magnetic lineations show a 20% increase in the CocosâNazca spreading rate after 1.1 Ma. The nearâaxis Mantle Bouguer gravity anomaly decreases eastward and becomes more circular, suggesting mantle upwelling, increasing temperatures, and perhaps progression to a developed melt supply beneath segments. Westward propagation of individual CocosâNazca segments is common with rates ranging between 12 and 54 mm/year. Segment lengths and lateral offsets between segments increase, in general, with distance from the tip of the gore.E. M. and H. S. are grateful to the National Science Foundation for funding this work and to InterRidge and the University of Leeds for providing support for a number of the international students and scholars who were able to participate on the cruise. We are also grateful for the extraordinary work of the Captain and crew of R/V Sally Ride , whose efficiency and good cheer made the cruise such a success. We thank M. Ligi and two anonymous reviewers for their comments which greatly improved the manuscript. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.2020-11-1
Gravity duals for logarithmic conformal field theories
Logarithmic conformal field theories with vanishing central charge describe
systems with quenched disorder, percolation or dilute self-avoiding polymers.
In these theories the energy momentum tensor acquires a logarithmic partner. In
this talk we address the construction of possible gravity duals for these
logarithmic conformal field theories and present two viable candidates for such
duals, namely theories of massive gravity in three dimensions at a chiral
point.Comment: 15 pages, 1 figure, invited plenary talk at the First Mediterranean
Conference on Classical and Quantum Gravity, v2: published version, corrected
typo in left eq. (5
Two Mathematically Equivalent Versions of Maxwell's Equations
This paper is a review of the canonical proper-time approach to relativistic
mechanics and classical electrodynamics. The purpose is to provide a physically
complete classical background for a new approach to relativistic quantum
theory. Here, we first show that there are two versions of Maxwell's equations.
The new version fixes the clock of the field source for all inertial observers.
However now, the (natural definition of the effective) speed of light is no
longer an invariant for all observers, but depends on the motion of the source.
This approach allows us to account for radiation reaction without the
Lorentz-Dirac equation, self-energy (divergence), advanced potentials or any
assumptions about the structure of the source. The theory provides a new
invariance group which, in general, is a nonlinear and nonlocal representation
of the Lorentz group. This approach also provides a natural (and unique)
definition of simultaneity for all observers. The corresponding particle theory
is independent of particle number, noninvariant under time reversal (arrow of
time), compatible with quantum mechanics and has a corresponding positive
definite canonical Hamiltonian associated with the clock of the source.
We also provide a brief review of our work on the foundational aspects of the
corresponding relativistic quantum theory. Here, we show that the standard
square-root and the Dirac equations are actually two distinct
spin- particle equations.Comment: Appeared: Foundations of Physic
Recommended from our members
Womenâs empowerment in agriculture: level, inequality, progress, and impact on productivity and efficiency
This paper examines level, inequality, and change in womenâs empowerment in agriculture and its impact on crop productivity and efficiency using a nationally representative Bangladesh Integrated Household Survey (BIHS) of 5,780 and 6,195 households from the same villages in Bangladesh in 2012 and 2015 conducted by International Food Policy Research Institute (IFPRI). Results reveal that although womenâs empowerment score increased significantly from 0.64 to 0.73 between 2012 to 2015, only the top 40 per cent of households have an adequate level of womenâs empowerment in agriculture, that is, scored above the threshold level of 0.80. The gender-gap in empowerment also reduced significantly from 0.23 to 0.20 during the same period. Female labour input significantly increases productivity. Both womenâs empowerment in agriculture and a reduction in the gender-gap in empowerment significantly increase production efficiency as expected. Efficiency is significantly lower in the Feed the Future Zone. However, female labour use and female education significantly reduce efficiency although the effects are relatively small. The findings argue for policies specifically targeting women to enhance womenâs empowerment in agriculture and reduce the gender-gap in empowerment
- âŠ