24 research outputs found

    Investigation of an Escherichia coli O145 outbreak in a child day-care centre - extensive sampling and characterization of eae- and stx1-positive E. coli yields epidemiological and socioeconomic insight

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>On October 29<sup>th </sup>2009 the health authorities in the city of Trondheim, Norway were alerted about a case of Shiga toxin-positive <it>E. coli </it>(STEC) O145 in a child with bloody diarrhoea attending a day-care centre. Symptomatic children in this day-care centre were sampled, thereby identifying three more cases. This initiated an outbreak investigation.</p> <p>Methods</p> <p>A case was defined as a child attending the day-care centre, in whom <it>eae- </it>and <it>stx</it><sub>1</sub>- but not <it>stx</it><sub>2</sub>-positive <it>E. coli </it>O145:H28 was diagnosed from a faecal sample, with multilocus variable number of tandem repeat analysis (MLVA) profile identical to the index isolate. All 61 children, a staff of 14 in the day-care centre, and 74 close contacts submitted faecal samples. Staff and parents were interviewed about cases' exposure to foods and animals. Faecal samples from 31 ewes from a sheep herd to which the children were exposed were analyzed for <it>E. coli </it>O145.</p> <p>Results</p> <p>Sixteen cases were identified, from which nine presented diarrhoea but not haemolytic uremic syndrome (HUS). The attack rate was 0.26, and varied between age groups (0.13-0.40) and between the three day-care centre departments (0.20-0.50), and was significantly higher amongst the youngest children. Median duration of shedding was 20 days (0-71 days). Children were excluded from the day-care centre during shedding, requiring parents to take compassionate leave, estimated to be a minimum total of 406 days for all cases. Atypical enteropathogenic <it>E. coli </it>(aEPEC) were detected among 14 children other than cases. These isolates were genotypically different from the outbreak strain. Children in the day-care centre were exposed to faecal pollution from a sheep herd, but <it>E. coli </it>O145 was not detected in the sheep.</p> <p>Conclusions</p> <p>We report an outbreak of <it>stx</it><sub>1</sub>- and <it>eae-</it>positive STEC O145:H28 infection with mild symptoms among children in a day-care centre. Extensive sampling showed occurrence of the outbreak strain as well as other STEC and aEPEC strains in the outbreak population. MLVA-typing of the STEC-isolates strongly indicates a common source of infection. The study describes epidemiological aspects and socioeconomic consequences of a non-O157 STEC outbreak, which are less commonly reported than O157 outbreaks.</p

    Identification of diarrheagenic Escherichia coli isolated from infants and children in Dar es Salaam, Tanzania

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Relatively few studies have been done in Tanzania to detect and classify diarrheagenic <it>Escherichia coli </it>(DEC) strains among children with diarrhea. This study aimed at investigating DEC among children in Dar es Salaam aged less than five years hospitalized due to acute/persistent diarrhea.</p> <p>Methods</p> <p>DEC were isolated from stool samples collected from two hundred and eighty children with acute/persistent diarrhea at Muhimbili National Hospital and Ilala and Mwananyamala Municipal Hospitals in Dar es Salaam. A multiplex PCR system method was used to detect a species specific gene for <it>E.coli </it>and ten different virulence genes for detection of five pathogroups of DEC namely enteroaggregative- (EAEC), enteropathogenic- (EPEC), enterotoxigenic- (ETEC), enteroinvasive- (EIEC) and enterohemorghagic- <it>Escherichia coli </it>(EHEC).</p> <p>Results</p> <p>Sixty-four patients (22.9%) harbored DEC. Forty-one of them (14.6%) were categorized as EAEC. Most of the EAEC (82.9%) were classified as typical EAEC possessing the <it>aggR </it>gene, and 92.6% carried the <it>aat </it>gene. Isolates from thirteen patients were EPEC (4.6%) and most of these (92.3%) were typical EPEC with both <it>eae </it>and <it>bfpA </it>genes. Ten isolates were identified as ETEC (3.6%) with only the heat stable toxin; either <it>st1a </it>or <it>st1b </it>but not both. Age wise, EAEC and EPEC were significantly more prevalent among the age group 0–6 months (p < 0.05). Genes for EHEC (<it>stx</it><sub>1 </sub>and <it>stx</it><sub>2</sub>) and EIEC <it>(ial</it>) were not detected in this study group.</p> <p>Conclusion</p> <p>The results show a high proportion of DEC among Tanzanian children with diarrhea, with typical EAEC and typical EPEC predominating. The use of primers for both variants of ST1 (st1a and st1b) increased the sensitivity for detection of ETEC strains.</p

    Potential Antiviral Options against SARS-CoV-2 Infection

    Get PDF
    As of June 2020, the number of people infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) continues to skyrocket, with more than 6.7 million cases worldwide. Both the World Health Organization (WHO) and United Nations (UN) has highlighted the need for better control of SARS-CoV-2 infections. However, developing novel virus-specific vaccines, monoclonal antibodies and antiviral drugs against SARS-CoV-2 can be time-consuming and costly. Convalescent sera and safe-in-man broad-spectrum antivirals (BSAAs) are readily available treatment options. Here, we developed a neutralization assay using SARS-CoV-2 strain and Vero-E6 cells. We identified the most potent sera from recovered patients for the treatment of SARS-CoV-2-infected patients. We also screened 136 safe-in-man broad-spectrum antivirals against the SARS-CoV-2 infection in Vero-E6 cells and identified nelfinavir, salinomycin, amodiaquine, obatoclax, emetine and homoharringtonine. We found that a combination of orally available virus-directed nelfinavir and host-directed amodiaquine exhibited the highest synergy. Finally, we developed a website to disseminate the knowledge on available and emerging treatments of COVID-19

    Whole genome sequencing reveals high clonal diversity of Escherichia coli isolated from patients in a tertiary care hospital in Moshi, Tanzania

    Get PDF
    Abstract Background Limited information regarding the clonality of circulating E. coli strains in tertiary care hospitals in low and middle-income countries is available. The purpose of this study was to determine the serotypes, antimicrobial resistance and virulence genes. Further, we carried out a phylogenetic tree reconstruction to determine relatedness of E. coli isolated from patients in a tertiary care hospital in Tanzania. Methods E. coli isolates from inpatients admitted at Kilimanjaro Christian Medical Centre between August 2013 and August 2015 were fully genome-sequenced at KCMC hospital. Sequence analysis was done for identification of resistance genes, Multi-Locus Sequence Typing, serotyping, and virulence genes. Phylogeny reconstruction using CSI Phylogeny was done to ascertain E. coli relatedness. Stata 13 (College Station, Texas 77,845 USA) was used to determine Cohen’s kappa coefficient of agreement between the phenotypically tested and whole genome sequence predicted antimicrobial resistance. Results Out of 38 E. coli isolates, 21 different sequence types (ST) were observed. Eight (21.1%) isolates belonged to ST131; of which 7 (87.5.%) were serotype O25:H4. Ten (18.4%) isolates belonged to ST10 clonal complex; of these, four (40.0%) were ST617 with serotype O89:H10. Twenty-eight (73.7%) isolates carried genes encoding beta-lactam resistance enzymes. On average, agreement across all drugs tested was 83.9%. Trimethoprim/sulphamethoxazole (co-trimoxazole) showed moderate agreement: 45.8%, kappa =15% and p = 0.08. Amoxicillin-clavulanate showed strongest agreement: 87.5%, kappa = 74% and p = 0.0001. Twenty-two (57.9%) isolates carried virulence factors for host cells adherence and 25 (65.7%) for factors that promote E. coli immune evasion by increasing survival in serum. The phylogeny analysis showed that ST131 clustering close together whereas ST10 clonal complex had a very clear segregation of the ST617 and a mix of the rest STs. Conclusion There is a high diversity of E. coli isolated from patients admitted to a tertiary care hospital in Tanzania. This underscores the necessity to routinely screen all bacterial isolates of clinical importance in tertiary health care facilities. WGS use for laboratory-based surveillance can be an effective early warning system for emerging pathogens and resistance mechanisms in LMICs

    Introduction and persistence of tularemia in Bulgaria

    No full text
    Introduction: Outbreaks of the zoonotic disease tularemia occurred in north-east Bulgaria in the 1960s. Then came 30 years of epidemiological silence until new outbreaks occurred in west Bulgaria in the 1990s. To investigate how bacterial strains of Francisella tularensis causing tularemia in wildlife and humans in the 1960s and the 1990s were related, we explored their genetic diversity. Material and methods: Ten F. tularensis genomes from the 1960s (n=3) and the 1990s (n=7) were sequenced, assigned to canonical single-nucleotide polymorphism (canSNP) clades, and compared to reference genomes. We developed four new canSNP polymerase chain reaction (PCR) assays based on the genome sequence information. Results and discussion: The genetic analysis showed that the outbreaks in the 1960s as well as in the 1990s involved multiple clones and new genetic diversity. The smallest genetic difference found between any of the Bulgarian strains was five SNPs between the strains L2 and 81 isolated 43 years apart, indicating that F. tularensis may persist locally over long time periods without causing outbreaks. The existence of genetically highly similar strain-pairs isolated the same year in the same area from different hosts supports a hypothesis of local expansion of clones during outbreaks. Close relationship (two SNPs) was found between one strain isolated 1961 in northeast Bulgaria and one strain isolated 5 years before in USSR. Historical data coinciding with the actual time point describe the introduction of water rats from USSR into the Bulgarian outbreak area, which may explain the close genetic relationship and the origin of the outbreak. Conclusion: Genome analysis of strains from two outbreaks in the 1960s and the 1990s provided valuable information on the genetic diversity and persistence of F. tularensis in Bulgaria
    corecore