351 research outputs found

    Simulation of Logging While Drilling Tools Based on Amorphous Si:H and LaBr3:Ce Detectors

    Get PDF
    Bore hole logging data represent the properties of rocks, such as porosity, density and constitutiveelements of formation, as a function of depth in a well. Properties of rocks are obtained from thermal neutron counting and gamma ray radiation due to neutron activation. Transport of neutrons, from an Am-Be source situated in a bore-hole tool, through rock media to detectors, has been simulated using a GEANT4 radiation transport code. The high precision GEANT4 cross section library was used to gain better analyses about well formation. In this paper we present the results of simulation of logging tools based on boron coated amorphous silicon detector for thermal neutron detection and LaBr3:Ce detector for gamma spectroscopy. Key words: Well logging; Spectroscopy; GEANT

    A comparative study on experimental and simulation responses of CR-39 to neutron spectra from a 252Cf source

    Get PDF
    A simulation of the interaction of neutrons emitted from a 252Cf source with a CR-39 detector is presented in this paper. Elastic and inelastic neutron interactions occur with the constituent materials of the CR-39 detector. Inelastic scatterings only consider (n, a) and (n, p) reactions. Fast neutrons tracks are, mainly, produced by recoil particle tracks in the plastic nuclear track detector as a result of the elastic scattering reaction of neutrons with the constituent materials of the solid-state nuclear track detectors, especially hydrogen nuclei. The energy of the neutron, incident position, direction, and type of interaction were sampled by the Monte Carlo method. The energy threshold, critical angle and scattering angle to the detector surface normal were the most important factors considered in our calculations. The energy deposited per neutron mass unit was calculated. The angular response was determined by both Monte Carlo simulation and experimental results. The number of visible proton tracks and energy deposited per neutron per visible track were calculated and simulated. The threshold energy of the recoil proton as a function of the thickness and incident proton angles was measured by the etchable range of protons at scattering angles, along with the shape and diameter of the track. Experimental and simulations result were in good agreement

    Analysis of the Arrangement of Geographical Conditions with the Aim of Reducing Air Pollution: A Case Study of Tehran

    Get PDF
    Abstract:According to the statistics of the Organization of the Environment, a total of 48 days of air pollution exceeds the admissible threshold (AQI more than 150) for the three months of the year. These days coincide with the time when Tehran's inversion reaches its maximum stability. The purpose of the present study was first to determine the height of air pollution in Tehran on the days when pollution exceeds the permissible limit. It also aims to study the pressure and temperature masses of such days, considering the geographical and topographic conditions, and finally to identify the best of these cells for theoretically possible air turbulence. The results of this study, based on Tehran temperature and pressure data over a 15-year period (2003-2017), show that the highest elevation of Tehran inversion does not exceed 1800 meters on polluted days. Only within 6 days of whole days beyond the admissible threshold, temperature and pressure cells with the highest Newtonian mass are formed. The center of such cells shows a pressure difference of 32 milligrams in November, 7 milligrams in January, 100 milligrams in December, as well as a temperature difference of 1.1 degrees in November, 4.4 degrees in January, and 1.9 degrees in December. Based on the results and topographic conditions as well as the cell adaptation to such conditions, it seems that theoretically, it is possible to artificially create air turbulence in Tehran to mitigate the contamination amount.Extended AbstractIntroductionTehran is one of the largest and the most crowded cities that suffers from air pollution. On some days of the year, the amount of contaminating and pollution elements increases so much that breathing is very difficult for inhabitants. The Air Quality Index (AQI) varies over the course of a year in Tehran. During autumn and winter, Tehran becomes more polluted. Atmospheric temperature inversion worsens air pollution during that period.  The two factors of climate and topography are affecting air pollution in Tehran. These two factors are emphasized in this research to look for a way to eliminate or at least decrease the pollution of Tehran's air. This research focuses on vertical and horizontal exchanges via atmospheric mixing by defining the good conditions for instability during the inversion periods in Tehran. If there are suitable mixing conditions (identified with cells of pressure and/or temperature), we could define the best status for instability. There is a need to know the differences between temperature and pressure that give rise to air turbulence. MethodologyFirstly, the pressure and temperature maps were drawn at different levels of the atmosphere. Further, based on these maps, the levels that had the most number cells of pressure and temperature with the most gradient were selected. This revealed the degree of differences in temperature and pressure that cells should have to create instability. We used the synoptic stations and the air pollution testing stations as well as Google Earth, Arc GIS, Surfer, and Voxler software DiscussionIn the first step, we find the days when the AQI (Air Quality Index) was greater than 150 as dangerous days of pollution from 2003 until 2017. In order to calculate the average inversion level, Radiosonde data were used. The height of the inversion phenomenon in Tehran is not the same in the target months (January, November, and December). The highest inversion height in the target months is 1800 m and the lowest is 1300 m. Exceedance of the AQI index or the pollution crisis threshold does not cover all areas of Tehran in the target months. That is, while some districts of Tehran experience higher pollution than the thresholds, others do not. During December, the expanse of pollution in Tehran is wider than other target months.Next, based on the determined inversion levels, the zoning maps of pressure and temperature on critical days of pollution were drawn in the target months. From among them, maps containing temperature and pressure cells were selected, then a matrix was prepared for all cells in the selected maps and their Newtonian mass was calculated. This matrix represents the cells that have the gradient because the two factors of cell difference and distances play a major role in their triggering. Finally, for each month, two temperature and pressure cells with the highest Newtonian mass were selected.In order to investigate the effect of topographic terrains on temperature and pressure cells, and to further understand the location of these cells, the temperature and pressure cells were overlain on the topography of the area. For this purpose, a 3D map of the area’s heights was plotted, and the synoptic stations, pressure, and temperature cells overlapped for analysis and investigation. ConclusionThe following results were obtained by drawing and examining the pressure and temperature maps:1) There are two cells in the November temperature map at Imam Khomeini Airport Station and Mehrabad Station. Imam Khomeini's cell is located at an altitude of 990.2 meters near the low elevation range of southern Shahriar. Mehrabad cell is located at an elevation of 1190 meters and in the easterly part of the southern Alborz Mountains.2) The temperature maps of January with two cells of geophysics and Shemiran are 1423.8 m and 1548.2 meters, respectively. The two formed cells are located in the recesses of the southern slope of the Alborz Mountains, and it may be noted that the confinement of cell formation zones may influence the formation of these temperature cells.3) The December temperature map contains two cells of geophysics and Shemiran, which are located at altitudes of 1423.8 and 1548.2, respectively. These two cells are also located in the indentation of the southern slope of the Alborz Mountains.4) On the map of November pressure difference, two cells of Chitgar at 1305.2 height and Imam Khomeini airport cell at 990.2 height are located. The Chitgar Cell lies on the southern slope of Alborz, where the heights have advanced, and the Imam Khomeini Airport cell is near the low-lying slopes south of Shahriar. The formation of these pressure cells at the sites mentioned may be affected by the air currents in the area. These currents, due to the advance of the southern slopes of the eastern highlands, divert the surface winds of these currents to the southern plains and increase the relative wind velocity at these points.5) The January pressure difference map shows two cells of Mehrabad with a height of 1190.2 and Chitgar with a height of 1305.2 meters. The two cells are located on the eaves of the southern Alborz Mountains.6) December pressure maps showed two cells of geophysics and Mehrabad. These two cells were located at 1423.8 and 1190.2, respectively. These two cells are located on the northern elevation of Tehran. In fact, this part of the southern slope of Alborz is indented, and this retreat can be effective in winds and existing cells.According to the obtained results, among all days that the AQI passes the threshold, only in 6 days, temperature and pressure closed cells with the highest Newtonian mass are formed. The center of these cells shows a pressure difference of 32 milligrams in November, 7 milligrams in January, 100 milligrams in December, and the temperature difference of 1.1 degrees in November, 4.4 degrees in January, and 1.9 degrees in December.Generally, considering the formed cells by the temperature and pressure difference and the gradient between them as well as the difference in height between the cells and their location and pointing out that the local winds cause the difference of temperature and pressure, it seems that, theoretically, it is possible to create artificial air turbulence in Tehran within the study area to control the contamination amount. Knowledge of the conditions in the study area is natural in this study and there is no uniformity pattern for all areas in the subject area. This study was conducted only for a limited period of 15 years (from 2003 to 2017) in the study area of ​​Tehran province and also all analyses were performed on the basis of statistics measured in synoptic stations in this area. It should be emphasized that all reviews and results are based on this range and the data and cannot be generalized. Keywords: Inversion, Air Pollution, Thermal Cells, Pressure Cells, Tehran. References- Ccoyllo, S. O. R., & Andrade, M. F. (2002). The influence of meteorological conditions on the behavior of Sapaolo Brazil. (n.p).- Dutta, J., Chowdhury, C., Roy, S., Middya, A. I., & Gazi, F. (2017). Towards smart city: Sensing air quality in city based on opportunistic crown-sensing. In Proceedings of the 18th International Conference on Distributed Computing and Networking, Hyderabad, India, 5–7.- Fargkou, M. C. (2009). Evaluation of urban sustainability through a metabolic perspective. PhD Thesis, Environmental Sciences, Universitat Autonoma de Barcelona.- Fortelli, A., Scafetta, N., & Mazzarella A. (2016). Influence of synoptic and local atmospheric patterns on PM10 air pollution levels: A model application to Naples (Italy). Journal of Atmospheric Environment, 143, 218-228.- Ma, J., Chen, L. L., Guo, Y., Wu, Q., Yang, M., Wu, M. H., & Kannan, K. (2014). Phthalate diester in Airborne PM2.5 and PM10 in a suburban area of Shanghai: Seasonal distribution and risk assessment. Journal of Science of the Total Environment, 497, 467-474.- Mohan, M., & Kandya, A. (2007). An analysis of the annual and seasonal trends of air quality index of Delhi. Journal of Environmental Monitoring and Assessment, 131(1-3), 267-277.- Molina, M. J., & Molina, L. T. (2004). Megacities and atmospheric pollution. Journal of the Air and Waste Management Association, 54(6), 644-680.- Nieuwenhuijsen, M. J., Basagan, X., Dadvand, P., Martinez, D., Cirach, M., Beelen, R., & Jacquemin, B. (2014). Air pollution and human fertility rates. Environmental International, 70, 9-14.- Song, X. D., Wang, S., Hao, C., & Qiu, J. S. (2014). Investigation of SO2 gas adsorption in metal-organic frameworks by molecular simulation. Journal of Inorganic Chemistry Communications, 46, 277-281.- Tian, G., Qiao, Z., & Xu, X. (2014). Characteristics of Particulate matter (PM10) and its relationship with meteorological factors during 2001-2012 in Beijing. Journal of Environmental Pollution, 192, 266-274.- Xing, Y., Horner, R. M. W., El-Haram, M. A., & Bebbington, J. (2009). A framework model for assessing sustainability impacts of urban development. Journal of Accounting Forum, 33, 209-224

    Diabetes Care in Iran: Where We Stand and Where We Are Headed

    Get PDF
    Background: The prevalence of diabetes has steadily increased in Iran from the time of the first published nationally representative survey in 1999 and despite efforts and strategies to reduce disease burden. Objectives: The aim of the present review was to describe the current status of diabetes care in Iran. Methods: A selective review of the relevant literature, focusing on properly conducted studies, describing past and present diabetes care strategies, policies, and outcomes in Iran was performed. Findings: The quality of diabetes care has gradually improved as suggested by a reduction in the proportion of undiagnosed patients and an increase in affordability of diabetes medications. The National Program for Prevention and Control of Diabetes has proven successful at identifying high-risk individuals, particularly in rural and remote-access areas. Unfortunately, the rising tide of diabetes is outpacing these efforts by a considerable margin. Conclusions: Substantial opportunities and challenges in the areas of prevention, diagnosis, and management of diabetes exist in Iran that need to be addressed to further improve the quality of care and clinical outcomes

    CONTROL SYSTEM OF 10-MEV BABY CYCLOTRON

    Get PDF
    Abstract For controlling all the equipment and services required for operating the 10 MeV baby cyclotron and optimizing various parameters, an extensive control system is used

    Global, regional, and national burden of chronic kidney disease, 1990–2017 : a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Health system planning requires careful assessment of chronic kidney disease (CKD) epidemiology, but data for morbidity and mortality of this disease are scarce or non-existent in many countries. We estimated the global, regional, and national burden of CKD, as well as the burden of cardiovascular disease and gout attributable to impaired kidney function, for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. We use the term CKD to refer to the morbidity and mortality that can be directly attributed to all stages of CKD, and we use the term impaired kidney function to refer to the additional risk of CKD from cardiovascular disease and gout. Methods The main data sources we used were published literature, vital registration systems, end-stage kidney disease registries, and household surveys. Estimates of CKD burden were produced using a Cause of Death Ensemble model and a Bayesian meta-regression analytical tool, and included incidence, prevalence, years lived with disability, mortality, years of life lost, and disability-adjusted life-years (DALYs). A comparative risk assessment approach was used to estimate the proportion of cardiovascular diseases and gout burden attributable to impaired kidney function. Findings Globally, in 2017, 1·2 million (95% uncertainty interval [UI] 1·2 to 1·3) people died from CKD. The global all-age mortality rate from CKD increased 41·5% (95% UI 35·2 to 46·5) between 1990 and 2017, although there was no significant change in the age-standardised mortality rate (2·8%, −1·5 to 6·3). In 2017, 697·5 million (95% UI 649·2 to 752·0) cases of all-stage CKD were recorded, for a global prevalence of 9·1% (8·5 to 9·8). The global all-age prevalence of CKD increased 29·3% (95% UI 26·4 to 32·6) since 1990, whereas the age-standardised prevalence remained stable (1·2%, −1·1 to 3·5). CKD resulted in 35·8 million (95% UI 33·7 to 38·0) DALYs in 2017, with diabetic nephropathy accounting for almost a third of DALYs. Most of the burden of CKD was concentrated in the three lowest quintiles of Socio-demographic Index (SDI). In several regions, particularly Oceania, sub-Saharan Africa, and Latin America, the burden of CKD was much higher than expected for the level of development, whereas the disease burden in western, eastern, and central sub-Saharan Africa, east Asia, south Asia, central and eastern Europe, Australasia, and western Europe was lower than expected. 1·4 million (95% UI 1·2 to 1·6) cardiovascular disease-related deaths and 25·3 million (22·2 to 28·9) cardiovascular disease DALYs were attributable to impaired kidney function. Interpretation Kidney disease has a major effect on global health, both as a direct cause of global morbidity and mortality and as an important risk factor for cardiovascular disease. CKD is largely preventable and treatable and deserves greater attention in global health policy decision making, particularly in locations with low and middle SDI

    Primary antibody deficiency in a tertiary referral hospital: A 30-year experiment

    Get PDF
    Background: Primary antibody deficiency (PAD) is the most common group of primary immunodeficiency disorders (PID), with a broad spectrum of clinical features ranging from severe and recurrent infections to asymptomatic disease. Objectives: The current study was performed to evaluate and compare demographic and clinical data in the most common types of PAD. Materials and Methods: We performed a retrospective review of the medical records of all PAD patients with a confirmed diagnosis of common variable immunodeficiency (CVID), hyper IgM syndrome (HIgM), selective IgA deficiency (SIgAD), and X-linked agammaglobulinemia (XLA) who were diagnosed during the last 30 years at the Children�s Medical Center, Tehran, Iran. Results: A total number of 280 cases of PAD (125 CVID, 32 HIgM, 63 SIgAD, and 60 XLA) were enrolled in the study. The median (range) age at the onset of disease in CVID, HIgM, SIgAD, and XLA was 2 (0-46), 0.91 (0-9), 1 (0-26), and 1 (0-10) years, respectively. Gastrointestinal infections were more prevalent in CVID patients, as were central nervous system infections in XLA patients. Autoimmune complications were more prevalent in HIgM patients, malignancies in CVID patients, and allergies in SIgAD patients. The mortality rate for CVID, HIgM, and XLA was 27.2, 28.1, and 25, respectively. No deaths were reported in SIgAD patients. Conclusions: SIgAD patients had the best prognosis. While all PAD patients should be monitored for infectious complications, special attention should be paid to the finding of malignancy and autoimmune disorders in CVID and HIgM patients, respectively. © 2015 Esmon Publicidad
    corecore