7 research outputs found

    Microwave-free magnetometry with nitrogen-vacancy centers in diamond

    Full text link
    We use magnetic-field-dependent features in the photoluminescence of negatively charged nitrogen-vacancy centers to measure magnetic fields without the use of microwaves. In particular, we present a magnetometer based on the level anti-crossing in the triplet ground state at 102.4 mT with a demonstrated noise floor of 6 nT/Hz\sqrt{\text{Hz}}, limited by the intensity noise of the laser and the performance of the background-field power supply. The technique presented here can be useful in applications where the sensor is placed closed to conductive materials, e.g. magnetic induction tomography or magnetic field mapping, and in remote-sensing applications since principally no electrical access is needed.Comment: 5 pages, 4 figure

    Novel Magnetic-Sensing Modalities with Nitrogen-Vacancy Centers in Diamond

    Get PDF
    In modern-day quantum metrology, quantum sensors are widely employed to detect weak magnetic fields or nanoscale signals. Quantum devices, exploiting quantum coherence, are inevitably connected to physical constants and can achieve accuracy, repeatability, and precision approaching fundamental limits. As a result, these sensors have shown utility in a wide range of research domains spanning both science and technology. A rapidly emerging quantum sensing platform employs atomic-scale defects in crystals. In particular, magnetometry using nitrogen-vacancy (NV) color centers in diamond has garnered increasing interest. NV systems possess a combination of remarkable properties, optical addressability, long coherence times, and biocompatibility. Sensors based on NV centers excel in spatial resolution and magnetic sensitivity. These diamond-based sensors promise comparable combination of high spatial resolution and magnetic sensitivity without cryogenic operation. The above properties of NV magnetometers promise increasingly integrated quantum measurement technology, as a result, they have been extensively developed with various protocols and find use in numerous applications spanning materials characterization, nuclear magnetic resonance (NMR), condensed matter physics, paleomagnetism, neuroscience and living systems biology, and industrial vector magnetometry. In this chapter, NV centers are explored for magnetic sensing in a number of contexts. In general, we introduce novel regimes for magnetic-field probes with NV ensembles. Specifically, NV centers are developed for sensitive magnetometers for applications where microwaves (MWs) are prohibitively invasive and operations need to be carried out under zero ambient magnetic field. The primary goal of our discussion is to improve the utility of these NV center-based magnetometers

    Search for Axionlike Dark Matter Using Solid-State Nuclear Magnetic Resonance

    No full text
    We report the results of an experimental search for ultralight axion-like dark matter in the mass range 162 neV to 166 neV. The detection scheme of our Cosmic Axion Spin Precession Experiment (CASPEr) is based on a precision measurement of 207^{207}Pb solid-state nuclear magnetic resonance in a polarized ferroelectric crystal. Axion-like dark matter can exert an oscillating torque on 207^{207}Pb nuclear spins via the electric-dipole moment coupling gdg_d, or via the gradient coupling gaNNg_{\text{aNN}}. We calibrated the detector and characterized the excitation spectrum and relaxation parameters of the nuclear spin ensemble with pulsed magnetic resonance measurements in a 4.4 T magnetic field. We swept the magnetic field near this value and searched for axion-like dark matter with Compton frequency within a 1 MHz band centered at 39.65 MHz. Our measurements place the upper bounds gd<9.5×104GeV2|g_d|<9.5\times10^{-4}\,\text{GeV}^{-2} and gaNN<2.8×101GeV1|g_{\text{aNN}}|<2.8\times10^{-1}\,\text{GeV}^{-1} (95% confidence level) in this frequency range. The constraint on gdg_d corresponds to an upper bound of 1.0×1021ecm1.0\times 10^{-21}\,\text{e}\cdot\text{cm} on the amplitude of oscillations of the neutron electric dipole moment, and 4.3×1064.3\times 10^{-6} on the amplitude of oscillations of CP-violating θ\theta parameter of quantum chromodynamics. Our results demonstrate the feasibility of using solid-state nuclear magnetic resonance to search for axion-like dark matter in the nano-electronvolt mass range

    Search for topological defect dark matter with a global network of optical magnetometers

    Get PDF
    Ultralight bosons such as axion-like particles are viable candidates for dark matter. They can form stable, macroscopic field configurations in the form of topological defects that could concentrate the dark matter density into many distinct, compact spatial regions that are small compared with the Galaxy but much larger than the Earth. Here we report the results of the search for transient signals from the domain walls of axion-like particles by using the global network of optical magnetometers for exotic (GNOME) physics searches. We search the data, consisting of correlated measurements from optical atomic magnetometers located in laboratories all over the world, for patterns of signals propagating through the network consistent with domain walls. The analysis of these data from a continuous month-long operation of GNOME finds no statistically significant signals, thus placing experimental constraints on such dark matter scenarios
    corecore