24 research outputs found
Vochtvoorziening in keten nog te vaak nattevingerwerk
Om goed de keten door te komen, hebben pot- en containerplanten voldoende vocht nodig. In de parktijk blijkt lang niet altijd aan deze voorwaarde te worden voldaan. Het PPO en HAS Kennis Transfer brachten de praktijk in kaart en stelden een protocol op voor de optimale vochtvoorziening in de afzetketen
Unravelling the genome-wide contributions of specific 2-alkyl-4-quinolones and PqsE to quorum sensing in Pseudomonas aeruginosa
The pqs quorum sensing (QS) system is crucial for Pseudomonas aeruginosa virulence both in vitro and in animal models of infection and is considered an ideal target for the development of anti-virulence agents. However, the precise role played by each individual component of this complex QS circuit in the control of virulence remains to be elucidated. Key components of the pqs QS system are 2-heptyl-4-hydroxyquinoline (HHQ), 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), the transcriptional regulator PqsR and the PQS-effector element PqsE. To define the individual contribution of each of these components to QS-mediated regulation, transcriptomic analyses were performed and validated on engineered P. aeruginosa strains in which the biosynthesis of 2-alkyl 4-quinolones (AQs) and expression of pqsE and pqsR have been uncoupled, facilitating the identification of the genes controlled by individual pqs system components. The results obtained demonstrate that i) the PQS biosynthetic precursor HHQ triggers a PqsR-dependent positive feedback loop that leads to the increased expression of only the pqsABCDE operon, ii) PqsE is involved in the regulation of diverse genes coding for key virulence determinants and biofilm development, iii) PQS promotes AQ biosynthesis, the expression of genes involved in the iron-starvation response and virulence factor production via PqsR-dependent and PqsR-independent pathways, and iv) HQNO does not influence transcription and hence does not function as a QS signal molecule. Overall this work has facilitated identification of the specific regulons controlled by individual pqs system components and uncovered the ability of PQS to contribute to gene regulation independent of both its ability to activate PqsR and to induce the iron-starvation response
The combination effects of trivalent gold ions and gold nanoparticles with different antibiotics against resistant Pseudomonas aeruginosa
Despite much success in drug design and development, Pseudomonas aeruginosa is still considered as one of the most problematic bacteria due to its ability to develop mutational resistance against a variety of antibiotics. In search for new strategies to enhance antibacterial activity of antibiotics, in this work, the combination effect of gold materials including trivalent gold ions (Au ) and gold nanoparticles (Au NPs) with 14 different antibiotics was investigated against the clinical isolates of P. aeruginosa, Staphylococcus aureus and Escherichia coli. Disk diffusion assay was carried out, and test strains were treated with the sub-inhibitory contents of gold nanomaterial. Results showed that Au NPs did not increase the antibacterial effect of antibiotics at tested concentration (40 ÎĽg/disc). However, the susceptibility of resistant P. aeruginosa increased in the presence of Au and methicillin, erythromycin, vancomycin, penicillin G, clindamycin and nalidixic acid, up to 147 %. As an individual experiment, the same group of antibiotics was tested for their activity against clinical isolates of S. aureus, E. coli and a different resistant strain of P. aeruginosa in the presence of sub-inhibitory contents of Au , where Au increased the susceptibility of test strains to methicillin, erythromycin, vancomycin, penicillin G, clindamycin and nalidixic acid. Our finding suggested that using the combination of sub-inhibitory concentrations of Au and methicillin, erythromycin, nalidixic acid or vancomycin may be a promising new strategy for the treatment of highly resistant P. aeruginosa infections
Vochtvoorziening in keten nog te vaak nattevingerwerk
Om goed de keten door te komen, hebben pot- en containerplanten voldoende vocht nodig. In de parktijk blijkt lang niet altijd aan deze voorwaarde te worden voldaan. Het PPO en HAS Kennis Transfer brachten de praktijk in kaart en stelden een protocol op voor de optimale vochtvoorziening in de afzetketen
Long-term behavioral outcome after early-life hyperthermia-induced seizures
Febrile seizures (FS) are among the most common types of seizures in the developing brain. It has been suggested that FS cause cognitive deficits that proceed into adulthood, but the information is conflicting. The aim of the present study was to determine whether experimental FS have long-term cognitive or behavioral deficits. FS were induced by hyperthermia (30 minutes, approximately 41 degrees C) in 10-day-old rat pups, and behavioral testing was performed. Hippocampus-dependent water maze learning, locomotor activity, and choice reaction time parameters (e.g., reaction time) were generally not affected by FS. However, more detailed analysis revealed that reaction times on the right side were slower than those on the left in controls, whereas this was not observed after FS. Early-life experimental FS did not cause overt cognitive and behavioral deficits, which is in line with previous work, but eliminated the lateralization effect in reaction time known to occur in normal controls, an effect that may be due to the combination of FS and kainic acid or to FS alone
Acute and separate modulation of motor and cognitive performance in parkinsonian rats by bilateral stimulation of the subthalamic nucleus.
The subthalamic nucleus (STN) is involved in motor and cognitive performance through its key role in the basal ganglia-thalamocortical circuits, but how these different modalities (motor and cognition) are controlled (similar vs. dissimilar) has not yet been elucidated. In the present study, the effects of bilateral STN deep brain stimulation (DBS) on motor and cognitive performance were investigated in a rat model of Parkinson disease (PD). After being trained in a choice reaction time (CRT) task, rats received bilateral injections of 6-hydroxydopamine (6-OHDA) into the striatum. One group of 6-OHDA animals was implanted bilaterally with stimulation electrodes at the level of the STN. Stimulations were performed at 130 Hz (frequency), 60 mu s (pulse width), and varying amplitudes of 1, 3, 30, and 150 mu A during the CRT task. Finally, rats were sacrificed and the brains processed for staining to determine the dopaminergic lesion (TH immunohistochemistry) and localization of the electrode tip (HE histochemistry). Bilateral 6-OHDA infusion significantly decreased (70%) the number of dopaminergic cells in the substantia nigra pars compacta (SNc) and increased motor time (MT), proportion of premature responding (PR), and reaction time (RT). Bilateral STN stimulation with an amplitude of 3 mu A normalized 6-OHDA-induced deficits in PR and RT. Simulation with an amplitude of 30 mu A reversed the lesion-induced deficits in MT and RT. Our data show for the first time that bilateral STN stimulation differentially affected the 6-OHDA-induced motor and cognitive deficits. This means that basal ganglia-thalamocortical motor and associative circuits responsible for specific motor and cognitive performance, which are processed through the STN, have unique physiological properties that can acutely and separately be modulated by specific electrical stimuli
Prenatal restraint stress and long-term affective consequences
Chronic or repeated stress during critical periods of human fetal brain development has been associated with various learning, behavioral and/or mood disorders in later life. In this investigation, pregnant Fischer 344 rats was individually restrained three times a day for 45 min during the last week of gestation in transparent plastic cylinders while at the same time being exposed to bright light. Control pregnant females were left undisturbed in their home cages. Anxiety and depressive-like behavior was measured in the offspring at an age of 6 months using the open field test, the home cage emergence test and the forced swim test. Prenatally stressed rats spent more time in the corners and less time along the walls of an open field, while no difference in total distance moved was observed. In addition, prenatally stressed rats took more time to leave their home cage in the home cage emergence test. On the other hand, no differences in immobility were observed in the forced swim test. Moreover, prenatally stressed rats showed lower stress-induced plasma corticosterone levels compared with control rats. Prenatal stress (PS) had no effect on the number of 5-bromo-2-deoxyuridine-positive cells - used as a measure for cell proliferation - in the dentate gyrus of these rats. These data further support the idea that PS may perturb normal anxiety-related development. However, the present data also suggest that an adaptive or protective effect of PS should not be ignored. Genetic factors are likely to play a role in this respect.