32 research outputs found

    A retrospective analysis investigating the effects of Telazol® and medetomidine on ejaculate characteristics in cheetahs (Acinonyx jubatus)

    Get PDF
    Zoo managed cheetahs provide an insurance population for wild cheetahs that are under threat of extinction from habitat loss, lack of prey, competition, pet trade and poaching for skin and bones. Assisted reproductive techniques including artificial insemination, in vitro fertilization, and embryo transfer augment natural breeding programs but rely on good quality semen for best results. It is understood that anesthesia can affect semen characteristics such as ejaculate volume, total sperm count, sperm motility, and incidence of urine contamination. Thus, the aim of this study was to conduct a retrospective analysis of 23 years of data to investigate sperm parameters of semen collected under anesthesia using medetomidine in combination with butorphanol and midazolam or Telazol® alone. Electroejaculation records (Medetomidine, Butorphanol, and Midazolam anesthetized n = 59 ejaculates, from 30 cheetahs, Telazol® anesthetized, n= 169 ejaculates, from 72 cheetahs) were evaluated for incidence of urine contamination. Electroejaculation records (Medetomidine, Butorphanol, and Midazolam anesthetized n = 21 ejaculates, from 17 cheetahs, Telazol® anesthetized, n = 143 ejaculates, from 63 cheetahs) were evaluated for total sperm count, total motility, ejaculate volume, and testicle size. Telazol® treated cheetahs had a numerically higher total sperm count (Median ± SD: 42.58 ± 77.8 × 106 spermatozoa) compared to those treated with medetomidine (Median ± SD: 31.2 ±44.58 × 106 spermatozoa), and a significantly (p < 0.05) higher sperm motility (Median ± SD: 70.0 ± 9.71%) compared to medetomidine (Median ± SD: 53.0 ± 16.41%) treated cheetahs. The findings of this study indicate that medetomidine anesthesia results in significantly lower sperm motility and Telazol® anesthesia results in a higher total sperm count and motility, thus resulting in higher quality ejaculate. This information can aid in the veterinary management of the species when involved in genome resource banking and assisted reproductive technologies

    Data from: Serum amyloid A protein concentration in blood is influenced by genetic differences in the cheetah (Acinonyx jubatus)

    No full text
    Systemic amyloid A (AA) amyloidosis is a major cause of morbidity and mortality among captive cheetahs. The self-aggregating AA protein responsible for this disease is a byproduct of serum amyloid A (SAA) protein degradation. Transcriptional induction of the SAA1 gene is dependent on both C/EBPβ and NF-κB cis-acting elements within the promoter region. In cheetahs, 2 alleles exist for a single guanine nucleotide deletion in the putative NF-κB binding site. In this study, a novel genotyping assay was developed to screen for the alleles. The results show that the SAA1A −97delG allele is associated with decreased SAA protein concentrations in the serum of captive cheetahs (n = 58), suggesting genetic differences at this locus may be affecting AA amyloidosis prevalence. However, there was no significant difference in the frequency of the SAA1A −97delG allele between individuals confirmed AA amyloidosis positive versus AA amyloidosis negative at the time of necropsy (n = 48). Thus, even though there is evidence that having more copies of the SAA1A −97delG allele results in a potentially protective decrease in serum concentrations of SAA protein in captive cheetahs, genotype is not associated with this disease within the North American population. These results suggest that other factors are playing a more significant role in the pathogenesis of AA amyloidosis among captive cheetahs

    Non-invasive identification of protein biomarkers for early pregnancy diagnosis in the cheetah (<i>Acinonyx jubatus</i>) - Fig 4

    No full text
    <p><b>Western blot intensities for protein candidates: a) immunoglobulin J chain; b) trefoil factor 3; c) complement C3 (iC3b fragment); d) complement C3 (C3dg fragment); e) alkaline phosphatase; and f) myosin binding protein C.</b> Source was fecal extracts from female cheetahs during the first 4 wk of pregnancy (n = 8), a non-pregnant luteal phase (n = 5), or non-ovulatory controls (n = 5). Red dots indicate outliers (i.e., >1.5 interquartile ranges above the third quartile or below the first quartile). Asterisk indicates difference trend (<i>P</i> < 0.1).</p

    An Investigation of Ovarian and Adrenal Hormone Activity in Post-Ovulatory Cheetahs (<em>Acinonyx jubatus</em>)

    No full text
    Cheetahs have been the subject of reproductive study for over 35 years, yet steroid hormone activity remains poorly described after ovulation. Our objective was to examine and compare fecal progestagen (fPM), estrogen (fEM), and glucocorticoid (fGM) metabolite concentrations post-ovulation in pregnant and non-pregnant animals to better understand female physiology (1) during successful pregnancy, (2) surrounding frequent non-pregnant luteal phases, and (3) after artificial insemination (AI) to improve the low success rate. Secondarily, the authors also validated a urinary progestagen metabolite assay, allowing pregnancy detection with minimal sample collection. Fecal samples were collected from 12 females for ≥2 weeks prior to breeding/hormone injection (the PRE period) through 92 days post-breeding/injection. Samples were assessed for hormone concentrations using established enzyme immunoassays. Urine samples were collected for 13 weeks from 6 females after natural breeding or AI. There were no differences among groups in fGM, but in pregnant females, concentrations were higher (p p = 0.0205), but fEM tended to be lower (p = 0.0626) than those with multi-cub litters. Our results provide insight into the physiological events surrounding natural and artificially stimulated luteal activity in the cheetah

    Oviductal Extracellular Vesicles Improve Post-Thaw Sperm Function in Red Wolves and Cheetahs

    No full text
    Artificial insemination (AI) is a valuable tool for ex situ wildlife conservation, allowing the re-infusion and dissemination of genetic material, even after death of the donor. However, the application of AI to species conservation is still limited, due mainly to the poor survival of cryopreserved sperm. Recent work demonstrated that oviductal extracellular vesicles (oEVs) improved cat sperm motility and reduced premature acrosomal exocytosis. Here, we build on these findings by describing the protein content of dog and cat oEVs and investigating whether the incubation of cryopreserved red wolf and cheetah sperm with oEVs during thawing improves sperm function. Both red wolf and cheetah sperm thawed with dog and cat oEVs, respectively, had more intact acrosomes than the non-EV controls. Moreover, red wolf sperm thawed in the presence of dog oEVs better maintained sperm motility over time (>15%) though such an improvement was not observed in cheetah sperm. Our work demonstrates that dog and cat oEVs carry proteins important for sperm function and improve post-thaw motility and/or acrosome integrity of red wolf and cheetah sperm in vitro. The findings show how oEVs can be a valuable tool for improving the success of AI with cryopreserved sperm in threatened species.Arts and Sciences, Irving K. Barber School of (Okanagan)Non UBCReviewedFacult

    Protein identification and relative quantification ratios (± SEM) of pregnancy biomarker candidates (n = 6) from cheetah fecal extracts in two mass spectrometry analyses.

    No full text
    <p>Protein identification and relative quantification ratios (± SEM) of pregnancy biomarker candidates (n = 6) from cheetah fecal extracts in two mass spectrometry analyses.</p

    Continued Decline in Genetic Diversity Among Wild Cheetahs (Acinonyx jubatus) Without Further Loss of Semen Quality

    No full text
    As a well-studied felid with limited genetic diversity, the cheetah (Acinonyx jubatus) has shaped much of the scientific debate surrounding inbreeding depression. The species survived a population bottleneck ~ 12,000 years ago and was extirpated from \u3e 75% of its historical range in the last century. Modern cheetahs produce poor-quality semen, a presumed manifestation of inbreeding depression. Within Felidae, a positive association between genetic diversity and semen quality is well supported by pedigree data and inter-species comparisons. However, this relationship has never been examined among individual cheetahs. Furthermore, whether ongoing population declines are exacerbating inbreeding depression in wild or captive cheetah populations is unknown. Using 12 microsatellite markers, we evaluated the relationship between heterozygosity and reproductive traits among wild (n = 54) and captive (n = 43) male cheetahs born from 1976–2007. We tested the hypotheses that genetic diversity has declined over the last ~ 30 years and is positively correlated with semen quality/breeding success in the cheetah. Findings revealed that genetic diversity has decreased in the wild, but not captive, population. Unexpectedly, heterozygosity was lower in proven versus unproven breeders and did not correlate with semen quality. A small proportion of all males (\u3c 10%) produced relatively high quality ejaculates, with sperm traits similar to those of non-inbred felid species. These data suggest a more complex relationship between inbreeding and male cheetah reproductive traits than previously appreciated. Intensive management of captive cheetahs appears to be minimizing inbreeding, whereas the continued erosion of genetic diversity in wild males is of conservation concern

    Mean (± SEM) total protein and steroid hormone metabolite concentrations of fecal extracts from female cheetahs.

    No full text
    <p>Protein was extracted from pooled samples collected over 28 d and steroid hormone metabolites extracted from individual fecal samples collected over 8 to 13 wk. Bars with different letters within a metric were different (<i>P</i> < 0.05).</p
    corecore