38 research outputs found

    A Framework For Detecting Noncoding Rare-Variant associations of Large-Scale Whole-Genome Sequencing Studies

    Get PDF
    Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 toPMed samples. We also analyze five non-lipid toPMed traits

    Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed

    Get PDF
    Genetic studies on telomere length are important for understanding age-related diseases. Prior GWAS for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally-diverse individuals (European, African, Asian and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n=109,122 individuals. We identified 59 sentinel variants (p-value OBFC1indicated the independent signals colocalized with cell-type specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated our TL polygenic trait scores (PTS) were associated with increased risk of cancer-related phenotypes

    Decline in subarachnoid haemorrhage volumes associated with the first wave of the COVID-19 pandemic

    Get PDF
    BACKGROUND: During the COVID-19 pandemic, decreased volumes of stroke admissions and mechanical thrombectomy were reported. The study\u27s objective was to examine whether subarachnoid haemorrhage (SAH) hospitalisations and ruptured aneurysm coiling interventions demonstrated similar declines. METHODS: We conducted a cross-sectional, retrospective, observational study across 6 continents, 37 countries and 140 comprehensive stroke centres. Patients with the diagnosis of SAH, aneurysmal SAH, ruptured aneurysm coiling interventions and COVID-19 were identified by prospective aneurysm databases or by International Classification of Diseases, 10th Revision, codes. The 3-month cumulative volume, monthly volumes for SAH hospitalisations and ruptured aneurysm coiling procedures were compared for the period before (1 year and immediately before) and during the pandemic, defined as 1 March-31 May 2020. The prior 1-year control period (1 March-31 May 2019) was obtained to account for seasonal variation. FINDINGS: There was a significant decline in SAH hospitalisations, with 2044 admissions in the 3 months immediately before and 1585 admissions during the pandemic, representing a relative decline of 22.5% (95% CI -24.3% to -20.7%, p\u3c0.0001). Embolisation of ruptured aneurysms declined with 1170-1035 procedures, respectively, representing an 11.5% (95%CI -13.5% to -9.8%, p=0.002) relative drop. Subgroup analysis was noted for aneurysmal SAH hospitalisation decline from 834 to 626 hospitalisations, a 24.9% relative decline (95% CI -28.0% to -22.1%, p\u3c0.0001). A relative increase in ruptured aneurysm coiling was noted in low coiling volume hospitals of 41.1% (95% CI 32.3% to 50.6%, p=0.008) despite a decrease in SAH admissions in this tertile. INTERPRETATION: There was a relative decrease in the volume of SAH hospitalisations, aneurysmal SAH hospitalisations and ruptured aneurysm embolisations during the COVID-19 pandemic. These findings in SAH are consistent with a decrease in other emergencies, such as stroke and myocardial infarction

    The Impact of Resistance Exercise on Muscle Mass in Glioblastoma in Survivors (RESIST): Protocol for a Randomized Controlled Trial

    No full text
    BackgroundGlioblastoma is the most common primary brain malignancy in adults, accounting for approximately 48% of all brain tumors. Standard treatment includes radiation and temozolomide chemotherapy. Glioblastomas are highly vascular and can cause vasogenic brain edema and mass effect, which can worsen the neurologic symptoms associated with the disease. The steroid dexamethasone (DEX) is the treatment of choice to reduce vasogenic edema and intracranial pressure associated with glioblastoma. However high-dose DEX or long-term use can result in muscle myopathy in 10%-60% of glioblastoma patients, significantly reducing functional fitness and quality of life (QOL). There is a wealth of evidence to support the use of exercise as an adjuvant therapy to improve functional ability as well as help manage treatment-related symptoms. Specifically, resistance training has been shown to increase muscle mass, strength, and functional fitness in aging adults and several cancer populations. Although studies are limited, research has shown that exercise is safe and feasible in glioblastoma populations. However, it is not clear whether resistance training can be successfully used in glioblastoma to prevent or mitigate steroid-induced muscle myopathy and associated loss of function. ObjectiveThe primary purpose of this study is to establish whether an individualized circuit-based program will reduce steroid-induced muscle myopathy, as indicated by maintained or improved functional fitness for patients on active treatment and receiving steroids. MethodsThis is a 2-armed, randomized controlled trial with repeated measures. We will recruit 38 adult (≥18 years) patients diagnosed with either primary or secondary glioblastoma who are scheduled to receive standard radiation and concurrent and adjuvant temozolomide chemotherapy postsurgical debulking and received any dose of DEX through the neurooncology clinic and the Nova Scotia Health Cancer Center. Patients will be randomly allocated to a standard of care waitlist control group or standard of care + circuit-based resistance training exercise group. The exercise group will receive a 12-week individualized, group and home-based exercise program. The control group will be advised to maintain an active lifestyle. The primary outcome, muscle myopathy (functional fitness), will be assessed using the Short Physical Performance Battery and hand grip strength. Secondary outcome measures will include body composition, cardiorespiratory fitness, physical activity, QOL, fatigue, and cognitive function. All measures will be assessed pre- and postintervention. Participant accrual, exercise adherence, and safety will be assessed throughout the study. ResultsThis study has been funded by the Canadian Cancer Society Atlantic Cancer Research Grant and the J.D. Irving Limited–Excellence in Cancer Research Fund (grant number 707182). The protocol was approved by the Nova Scotia Health and Acadia University’s Research Ethics Boards. Enrollment is anticipated to begin in March 2022. ConclusionsThis study will inform how individualized circuit-based resistance training may improve functional independence and overall QOL of glioblastoma patients. Trial RegistrationClinicalTrails.gov NCT05116137; https://www.clinicaltrials.gov/ct2/show/NCT05116137 International Registered Report Identifier (IRRID)DERR1-10.2196/3770

    In Situ Enhancement and Isotopic Labeling of Biogenic Coalbed Methane

    No full text
    Subsurface microbial (biogenic) methane production is an important part of the global carbon cycle that has resulted in natural gas accumulations in many coal beds worldwide. Laboratory studies suggest that complex carbon-containing nutrients (e.g., yeast or algae extract) can stimulate methane production, yet the effectiveness of these nutrients within coal beds is unknown. Here, we use downhole monitoring methods in combination with deuterated water (D2O) and a 200-liter injection of 0.1% yeast extract (YE) to stimulate and isotopically label newly generated methane. A total dissolved gas pressure sensor enabled real-time gas measurements (641 days preinjection and for 478 days postinjection). Downhole samples, collected with subsurface environmental samplers, indicate that methane increased 132% above preinjection levels based on isotopic labeling from D2O, 108% based on pressure readings, and 183% based on methane measurements 266 days postinjection. Demonstrating that YE enhances biogenic coalbed methane production in situ using multiple novel measurement methods has immediate implications for other field-scale biogenic methane investigations, including in situ methods to detect and track microbial activities related to the methanogenic turnover of recalcitrant carbon in the subsurface

    Robust, flexible, and scalable tests for Hardy-Weinberg Equilibrium across diverse ancestries

    No full text
    Traditional Hardy-Weinberg equilibrium (HWE) tests (the χ2 test and the exact test) have long been used as a metric for evaluating genotype quality, as technical artifacts leading to incorrect genotype calls often can be identified as deviations from HWE. However, in data sets composed of individuals from diverse ancestries, HWE can be violated even without genotyping error, complicating the use of HWE testing to assess genotype data quality. In this manuscript, we present the Robust Unified Test for HWE (RUTH) to test for HWE while accounting for population structure and genotype uncertainty, and to evaluate the impact of population heterogeneity and genotype uncertainty on the standard HWE tests and alternative methods using simulated and real sequence data sets. Our results demonstrate that ignoring population structure or genotype uncertainty in HWE tests can inflate false-positive rates by many orders of magnitude. Our evaluations demonstrate different tradeoffs between false positives and statistical power across the methods, with RUTH consistently among the best across all evaluations. RUTH is implemented as a practical and scalable software tool to rapidly perform HWE tests across millions of markers and hundreds of thousands of individuals while supporting standard VCF/BCF formats. RUTH is publicly available at https://www.github.com/statgen/ruth

    13 How important tasks are performed: peer review

    No full text
    i
    corecore