12 research outputs found

    Replenishing the Indus Delta through multi-sector transformation

    Get PDF
    The Indus River Basin (IRB) is a severely water-stressed and rapidly developing home to an estimated 250 million people in South Asia. An acute deficit of environmental flows (EFs) in the basin’s delta negatively impacts geomorphology and surrounding ecosystems. Here, a sub-national model of the IRB’s integrated water–energy–land systems is applied to quantify multi-sector transformations and system costs for enhancing EFs to the Indus Delta. The results show that increasing the average outflows from the basin relative to historical policy levels by 2.5 and 5 times would increase sectoral costs for upstream water users between 17–32 and 68–72% for low and high ecological potential targets. The enhanced EFs result in more energy for pumping and treating water upstream from the delta and a net increase in irrigation and energy investments. The EF policy costs are minimized by 7–14% through cooperation across countries and 6–9% through the coordinated implementation of water efficiency measures in the irrigation, conveyance, power plant cooling, and water treatment sectors. The results underscore the crucial role of a multi-sector, multi-scale collaboration in achieving EF targets in water-stressed river basins for ecosystem adaptation to climate vulnerability, restoration of the delta, and socio-economic benefits

    Emerging Themes and Future Directions of Multi-Sector Nexus Research and Implementation

    Get PDF
    Water, energy, and food are all essential components of human societies. Collectively, their respective resource systems are interconnected in what is called the “nexus”. There is growing consensus that a holistic understanding of the interdependencies and trade-offs between these sectors and other related systems is critical to solving many of the global challenges they present. While nexus research has grown exponentially since 2011, there is no unified, overarching approach, and the implementation of concepts remains hampered by the lack of clear case studies. Here, we present the results of a collaborative thought exercise involving 75 scientists and summarize them into 10 key recommendations covering: the most critical nexus issues of today, emerging themes, and where future efforts should be directed. We conclude that a nexus community of practice to promote open communication among researchers, to maintain and share standardized datasets, and to develop applied case studies will facilitate transparent comparisons of models and encourage the adoption of nexus approaches in practice

    Emerging Themes and Future Directions of Multi-Sector Nexus Research and Implementation

    Get PDF
    Water, energy, and food are all essential components of human societies. Collectively, their respective resource systems are interconnected in what is called the “nexus”. There is growing consensus that a holistic understanding of the interdependencies and trade-offs between these sectors and other related systems is critical to solving many of the global challenges they present. While nexus research has grown exponentially since 2011, there is no unified, overarching approach, and the implementation of concepts remains hampered by the lack of clear case studies. Here, we present the results of a collaborative thought exercise involving 75 scientists and summarize them into 10 key recommendations covering: the most critical nexus issues of today, emerging themes, and where future efforts should be directed. We conclude that a nexus community of practice to promote open communication among researchers, to maintain and share standardized datasets, and to develop applied case studies will facilitate transparent comparisons of models and encourage the adoption of nexus approaches in practice

    Bearing the Cost of Stored Carbon Leakage

    No full text
    Carbon capture and sequestration (CCS) is considered a key technology for stabilizing climate change. However, leakage of CO2 from stored carbon can potentially undermine the value of carbon storage as a mitigation option. Thus, monitoring and verifiability of CO2 storage should be encouraged through policy provisions such as accounting and pricing of leaked emissions. Here we assess different institutional and economic mechanisms for accounting for carbon leakage. Using an integrated assessment model we quantify the impacts on the climate, the economy and the mitigation strategies. Results show that carbon leakage can reduce the share of fossil based CCS by up to 35%, if it is controlled and correctly priced. Biomass based CCS is less affected. Accounting for leakage leads to an increase of climate policy costs of up to 0.4 percentage points due to increased emissions

    The Role of Carbon Capture and Storage Electricity in Attaining 1.5 and 2°C

    No full text
    The climate targets defined under the Paris agreement of limiting global temperature increase below 1.5 or 2°C require massive deployment of low-carbon options in the energy mix, which is currently dominated by fossil fuels. Scenarios suggest that Carbon Capture and Storage (CCS) might play a central role in this transformation, but CCS deployment is stagnating and doubts remain about its techno-economic feasibility. In this article, we carry out a throughout assessment of the role of CCS electricity for a variety of temperature targets, from 1.5 to above 4°C, with particular attention to the lower end of this range. We collect the latest data on CCS economic and technological future prospects to accurately represent several types of CCS plants in the WITCH energy-economy model, We capture uncertainties by means of extensive sensitivity analysis in parameters regarding plants technical aspects, as well as costs and technological progress. Our research suggests that stringent temperature scenarios constrain fossil fuel CCS based deployment, which is maximum for medium policy targets. On the other hand, Biomass CCS, along with renewables, increases with the temperature stringency. Moreover, the relative importance of cost and performance parameters change with the climate target. Cost uncertainty matters in less stringent policy cases, whereas performance matters for lower temperature targets

    DataSheet1_Replenishing the Indus Delta through multi-sector transformation.docx

    No full text
    The Indus River Basin (IRB) is a severely water-stressed and rapidly developing home to an estimated 250 million people in South Asia. An acute deficit of environmental flows (EFs) in the basin’s delta negatively impacts geomorphology and surrounding ecosystems. Here, a sub-national model of the IRB’s integrated water–energy–land systems is applied to quantify multi-sector transformations and system costs for enhancing EFs to the Indus Delta. The results show that increasing the average outflows from the basin relative to historical policy levels by 2.5 and 5 times would increase sectoral costs for upstream water users between 17–32 and 68–72% for low and high ecological potential targets. The enhanced EFs result in more energy for pumping and treating water upstream from the delta and a net increase in irrigation and energy investments. The EF policy costs are minimized by 7–14% through cooperation across countries and 6–9% through the coordinated implementation of water efficiency measures in the irrigation, conveyance, power plant cooling, and water treatment sectors. The results underscore the crucial role of a multi-sector, multi-scale collaboration in achieving EF targets in water-stressed river basins for ecosystem adaptation to climate vulnerability, restoration of the delta, and socio-economic benefits.</p

    Climate mitigation scenarios with persistent COVID-19-related energy demand changes

    Get PDF
    The COVID-19 pandemic caused radical temporary breaks with past energy use trends. How post-pandemic recovery will impact the longer-term energy transition is unclear. Here we present a set of global COVID-19 shock-and-recovery scenarios that systematically explore the effect of demand changes persisting. Our pathways project final energy demand reductions of 1–36 EJ yr−1 by 2025 and cumulative CO2 emission reductions of 14–45 GtCO2 by 2030. Uncertainty ranges depend on the depth and duration of the economic downturn and demand-side changes. Recovering from the pandemic with energy-efficient practices embedded in new patterns of travel, work, consumption and production reduces climate mitigation challenges. A low energy demand recovery reduces carbon prices for a 1.5 °C-consistent pathway by 19%, lowers energy supply investments until 2030 by US$1.8 trillion and softens the pressure to rapidly upscale renewable energy technologies

    The NExus Solutions Tool (NEST) v1.0: An open platform for optimizing multi-scale energy-water-land system transformations

    No full text
    The energy–water–land nexus represents a critical leverage future policies must draw upon to reduce trade-offs between sustainable development objectives. Yet, existing long-term planning tools do not provide the scope or level of integration across the nexus to unravel important development constraints. Moreover, existing tools and data are not always made openly available or are implemented across disparate modeling platforms that can be difficult to link directly with modern scientific computing tools and databases. In this paper, we present the NExus Solutions Tool (NEST): a new open modeling platform that integrates multi-scale energy–water–land resource optimization with distributed hydrological modeling. The new approach provides insights into the vulnerability of water, energy and land resources to future socioeconomic and climatic change and how multi-sectoral policies, technological solutions and investments can improve the resilience and sustainability of transformation pathways while avoiding counterproductive interactions among sectors. NEST can be applied at different spatial and temporal resolutions, and is designed specifically to tap into the growing body of open-access geospatial data available through national inventories and the Earth system modeling community. A case study analysis of the Indus River basin in south Asia demonstrates the capability of the model to capture important interlinkages across system transformation pathways towards the United Nations' Sustainable Development Goals, including the intersections between local and regional transboundary policies and incremental investment costs from rapidly increasing regional consumption projected over the coming decades

    Data for climate mitigation scenarios with persistent COVID-19 related energy demand changes

    No full text
    This repository contains data for the main text figures plus some supplementary figures in the article: Kikstra et al 2021 Nat. Energy. DOI: 10.1038/s41560-021-00904-8 This dataset should be cited as: Kikstra et al. (2021). Data for climate mitigation scenarios with persistent COVID-19 related energy demand changes. DOI: 10.5281/zenodo.5211169 In order to reproduce the figures, one needs to use the script that is available on GitHub at: https://github.com/iiasa/covid-energy-demand-scenarios The most accessible way of exploring the scenario data behind this article would be to go to https://data.ece.iiasa.ac.at/engage/#/workspaces/60. This goes to a web tool hosted by the International Institute of Applied Systems Analysis (IIASA) which provides access to a database of these and more variables of interest, defined for each scenario on the detail of MESSAGE regions, with a few example workspaces available within the ENGAGE Scenario Explorer. The Scenario Explorer is a versatile open access tool to browse, visualize and download data and results. Users can freely create a private workspace where customized plots can be saved and shared. For tutorials on how to use the Scenario Explorer, please visit https://software.ece.iiasa.ac.at/ixmp-server/tutorials.html. The scenarios that were used for the IPCC Special Report on 1.5C warming (SR1.5) have been made available at https://data.ece.iiasa.ac.at/iamc-1.5c-explorer/. The data is available for download at the ENGAGE Scenario Explorer. The license permits use of the scenario ensemble for scientific research and science communication, but restricts redistribution of substantial parts of the data. Please refer to the FAQ and legal code for more information
    corecore