421 research outputs found

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D∗)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D∗)≡B(Bˉ→D∗τ−Μˉτ)/B(Bˉ→D∗Ό−ΜˉΌ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)≡B(B−→D0τ−Μˉτ)/B(B−→D0Ό−ΜˉΌ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ−→Ό−ΜτΜˉΌ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D∗)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=−0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Decomposition temperatures and vapour pressures of ionic liquids for electrochemical applications

    No full text
    Ionic liquids (ILs) are salts with melting temperatures below 100°C. Typically they are formed by organic cations, like imidazolium, pyrrolidinium, ammonium or alkyl phosphonium, and organic/inorganic anions, like hexafluorophosphate, tetrafluoroborate, triflate, dicyanamide, tetracyanamethanide, bis(trifluoromethanesulfonyl)imide (TFSI) or bis(fluorosulfonyl)imide (FSI). The presence of such bulky and asymmetric ions decreases the ion-ion interactions and lowers the melting point with respect to more classical salts. ILs present peculiar physical and chemical properties: extremely low vapour pressure, high ionic conductivity, a high thermal, chemical and electrochemical stability, a high thermal capacity and good solvent capacity. Due to these peculiarities, ILs have been proposed for a large variety of applications in chemistry and physics, such as, for example, green solvents, electrolyte components for electrochemical devices, lubricants, ingredients for pharmaceuticals and heat exchangers. Due to the possible applications of such materials, it is of great importance to investigate their decomposition temperatures and vapour pressures. In the present paper we report an investigation on these physical peculiarities for a few IL families based on the bis(trifluoromethanesulfonyl)imide or bis(fluorosulfonyl)imide anions and on quaternary ammonium or imidazolium cations. Ramp-temperature and isothermal thermogravimetric experiments were conducted in these compounds, after running a strict drying procedure, in order to ascertain their decomposition temperature and their vapour pressure in a wide temperature range, from 175 up to 325 °C, following well established procedures [1,2]. This Project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 814464

    Assessment of multiple daily precipitation statistics in ERA-Interim driven Med-CORDEX and EURO-CORDEX experiments against high resolution observations

    No full text
    We assess the statistics of different daily precipitation indices in ensembles of Med-CORDEX and EURO-CORDEX experiments at high resolution (grid spacing of ~0.11\ub0, or RCM11) and medium resolution (grid spacing of ~0.44\ub0, or RCM44) with regional climate models (RCMs) driven by the ERA-Interim reanalysis of observations for the period 1989\u20132008. The assessment is carried out by comparison with a set of high resolution observation datasets for nine European subregions. The statistics analyzed include quantitative metrics for mean precipitation, daily precipitation probability density functions (PDFs), daily precipitation intensity, frequency, 95th percentile and 95th percentile of dry spell length. We assess an ensemble including all Med-CORDEX and EURO-CORDEX models together and others including the Med-CORDEX and EURO-CORDEX separately. For the All Models ensembles, the RCM11 one shows a remarkable performance in reproducing the spatial patterns and seasonal cycle of mean precipitation over all regions, with a consistent and marked improvement compared to the RCM44 ensemble and the ERA-Interim reanalysis. A good consistency with observations by the RCM11 ensemble (and a substantial improvement compared to RCM44 and ERA-Interim) is found also for the daily precipitation PDFs, mean intensity and, to a lesser extent, the 95th percentile. A general improvement by the RCM11 models is also found when the data are upscaled and intercompared at the 0.44\ub0 and 1.5\ub0 resolutions. For some regions the RCM11 ensemble overestimates the occurrence of very high intensity events while for one region the models underestimate the occurrence of the most intense extremes. The RCM11 ensemble still shows a general tendency to underestimate the dry day frequency and 95th percentile of dry spell length over wetter regions, with only a marginal improvement compared to the lower resolution models. This indicates that the problem of the excessive production of low precipitation events found in many climate models persists also at relatively high resolutions, at least in wet climate regimes. Concerning the Med-CORDEX and EURO-CORDEX ensembles we find that their performance is of similar quality over the Mediterranean regions analyzed. Finally, we stress the need of consistent and quality checked fine scale observation datasets for the assessment of RCMs run at increasingly high horizontal resolutions

    Social Organization and Agricultural Strategies to Face Climate Variability: A Case Study in Guaraciaba, Southern Brazil

    No full text
    Climate scenarios and projections have suggested that the impacts of climate change on land use will be noticed particularly by the communities that depend on natural resources for their subsistence. The climate vulnerability of poor communities varies greatly, but in general, climate change combines with other threats and becomes superimposed on existing vulnerabilities. This paper presents a case study that strives to understand the social organization in a vulnerable community of Guaraciaba, in southern Brazil, to investigate aspects of an adaptation strategy to climate change based on the local development and conservation of landraces of a set of crop species. Landraces are varieties better adapted to adversities, especially drought, which is an important threat to the famers in the region. Every farmer receives annually a “kit of biodiversity”, a set of local varieties with the amount of seeds necessary to be cultivated in order to produce enough food for the family. The study had a qualitative approach and was carried out through semi-structured interviews with technicians and 30% of the rural families who farm with landraces. The study concludes that the factors that make this adaptation strategy sustainable are: the ability to undertake actions strongly based on local socio-cultural needs (a social support network), biodiversity management practices designed to reduce external economic dependence, self management of genetic resources, the establishment of priorities based on locally available resources, a work plan for community participation (field days, a community based festival), the establishment of the roles of community in the planning and implementation of programs for biodiversity management

    Social Organization and Agricultural Strategies to Face Climate Variability: A Case Study in Guaraciaba, Southern Brazil

    No full text
    Climate scenarios and projections have suggested that the impacts of climate change on land use will be noticed particularly by the communities that depend on natural resources for their subsistence. The climate vulnerability of poor communities varies greatly, but in general, climate change combines with other threats and becomes superimposed on existing vulnerabilities. This paper presents a case study that strives to understand the social organization in a vulnerable community of Guaraciaba, in southern Brazil, to investigate aspects of an adaptation strategy to climate change based on the local development and conservation of landraces of a set of crop species. Landraces are varieties better adapted to adversities, especially drought, which is an important threat to the famers in the region. Every farmer receives annually a “kit of biodiversity”, a set of local varieties with the amount of seeds necessary to be cultivated in order to produce enough food for the family. The study had a qualitative approach and was carried out through semi-structured interviews with technicians and 30% of the rural families who farm with landraces. The study concludes that the factors that make this adaptation strategy sustainable are: the ability to undertake actions strongly based on local socio-cultural needs (a social support network), biodiversity management practices designed to reduce external economic dependence, self management of genetic resources, the establishment of priorities based on locally available resources, a work plan for community participation (field days, a community based festival), the establishment of the roles of community in the planning and implementation of programs for biodiversity management

    So similar, yet so different: the case of the ionic liquids N-trimethyl-N(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide and N,N-diethyl-N-methyl-N(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide

    No full text
    Two ethoxy containing ionic liquids (ILs) sharing the same anion, N-trimethyl-N (2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide (N111(2O1)-TFSI) and N,N-diethyl-N-methyl-N (2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide (N122(2O1)-TFSI), and their mixtures are studied by means of differential scanning calorimetry and infrared spectroscopy combined with DFT calculations. The two ILs, slightly differing only for the length of two short chains, diverge significantly in the thermal properties: N111(2O1)-TFSI undergoes to a crystallization upon cooling, whereas N122(2O1)-TFSI is likely to become a glass. Experimental results indicate that in N111(2O1)-TFSI the occurrence of hydrogen bonding is energetically favored, and become particularly evident in the solid phase. The comparison with computational results indicates that it could be ascribed to the CH bonds involving the C atoms directly linked to the central N atom. In N122(2O1)-TFSI, DFT calculations suggest that hydrogen bonding could take place; however, IR measurements suggest that hydrogen bonding is not energetically favored. Moreover, in N122(2O1)-TFSI there is a larger conformational disorder that prevents from the alignment of cation and anion that contributes to the detection of clear hydrogen bonding infrared active bands. The mixtures rich in N111(2O1)-TFSI crystallize at lower temperatures than the pure ionic liquid. Progressively, the energy gain due to the instauration of hydrogen bonding decreases as the concentration of N122(2O1) TFSI increases

    Geological risks in large cities: The landslides triggered in the city of Rome (Italy) by the rainfall of 31 January-2 February 2014

    No full text
    An exceptional rainfall battered the city of Rome (Italy) from 31 January to 2 February 2014. The event had variable intensity and duration in the different parts of the city. The exceptionality of the event lies in the intensity of rainfall cumulated in 6 hours (return period > 50 years) and in its uneven distribution over the urban area. The event triggered a number of landslides of different type, which caused substantial damage. Researchers from the Centro di Ricerca per i Rischi Geologici (Research Centre on Prediction, Prevention and Control of Geological Risks - CERI) of the University of Rome "Sapienza" carried out field surveys and assessments immediately after the event. The team detected and inventoried 68 landslides, mostly occurring in the sandy and sandy-silty deposits of the Monte Mario, Ponte Galeria and Valle Giulia Formations. The complete inventory of the landslides is accessible via WebGIS on CERI's website http://www.ceri.uniroma1.it/cn/landslidesroma.jsp. The spatial distribution of the landslides evidences that 69% occurred in clastic deposits of sedimentary origin and only 6% in volcanic deposits. This finding disagrees with more general statistical data, based on the inventory of Rome's historical landslides, indicating that almost 41% of slope instabilities occur in volcanic deposits and almost 12% in sedimentary ones. In the data reported here, this apparent contradiction is justified by the fact that most the rainfall under review was concentrated in the north-western portion of Rome's urban area, whose hills accommodate outcrops of dominantly sedimentary deposits from Plio-Pleistocene marine and continental cycles. © Sapienza Università Editrice
    • 

    corecore