13 research outputs found

    Synthesis and Characterization of High-Photoactivity Electrodeposited Cu2O solar absorber by photoelectrochemistry and ultrafast spectroscopy

    Get PDF
    We present a systematic study on the effects of electrodeposition parameters on the photoelectrochemical properties of Cu2O. The influence of deposition variables (temperature, pH, and deposition current density) on conductivity has been widely explored in the past for this semiconductor, but the optimization of the electrodeposition process for the photoelectrochemical response in aqueous solutions under AM 1.5 illumination has received far less attention. In this work, we analyze the photoactivity of Cu2O films deposited at different conditions and correlate the photoresponse to morphology, film orientation, and electrical properties. The photoelectrochemical response was measured by linear sweep voltammetry under chopped simulated AM 1.5 illumination. The highest photocurrent obtained was −2.4 mA cm−2 at 0.25 V vs RHE for a film thickness of 1.3 ÎŒm. This is the highest reported value reached so far for this material in an aqueous electrolyte under AM 1.5 illumination. The optical and electrical properties of the most photoactive electrode were investigated by UV−vis spectroscopy and electrochemical impedance, while the minority carrier lifetime and diffusion length were measured by optical-pump THz-probe spectroscopy

    Organic solvent free PbI₂ recycling from perovskite solar cells using hot water

    Get PDF
    Perovskite solar cells represent an emerging and highly promising renewable energy technology. However, the most efficient perovskite solar cells critically depend on the use of lead. This represents a possible environmental concern potentially limiting the technologiesĂąEurotm commercialization. Here, we demonstrate a facile recycling process for PbI2, the most common lead-based precursor in perovskite absorber material. The process uses only hot water to effectively extract lead from synthetic precursor mixes, plastic- and glass-based perovskites (92.6 ĂąEuro" 10

    Highly active oxide photocathode for photoelectrochemical water reduction

    No full text
    A clean and efficient way to overcome the limited supply of fossil fuels and the greenhouse effect is the production of hydrogen fuel from sunlight and water through the semiconductor/water junction of a photoelectrochemical cell, where energy collection and water electrolysis are combined into a single semiconductor electrode. We present a highly active photocathode for solar H-2 production, consisting of electrodeposited cuprous oxide, which was protected against photocathodic decomposition in water by nanolayers of Al-doped zinc oxide and titanium oxide and activated for hydrogen evolution with electrodeposited Pt nanoparticles. The roles of the different surface protection components were investigated, and in the best case electrodes showed photocurrents of up to -7.6 mA cm(-2) at a potential of 0V versus the reversible hydrogen electrode at mild pH. The electrodes remained active after 1 h of testing, cuprous oxide was found to be stable during the water reduction reaction and the Faradaic efficiency was estimated to be close to 100%

    Ultrathin films on copper(i) oxide water splitting photocathodes: a study on performance and stability

    Full text link
    The utilisation of Cu2O photocathodes for photoelectrochemical water splitting requires their stabilisation due to photocorrosion in aqueous electrolytes. Ultrathin films of wide band gap semiconducting oxides deposited by atomic layer deposition (ALD) on top of cuprous oxide can perform the dual function of both facilitating charge extraction (through the creation of a p-n junction) and protecting the absorber material from the aqueous electrolyte, thereby suppressing corrosion in favor of hydrogen generation. The factors that determine the photocurrent performance as well as the stability of these photoelectrodes are examined. Specifically, the influence of ALD deposition temperature, electrolyte pH, electrolyte composition as well as post-deposition annealing treatments was studied. The successful development of protective overlayers must fulfil the dual requirements of favourable band alignments as well as chemical stability. At long time scales, the deactivation of the photocathodes proceeds through etching of the amorphous overlayer, accompanied by the loss of the platinum catalyst particles. Through the deposition of a semi-crystalline TiO2 overlayer, 62% stability over 10 hours of testing has been demonstrated without re-platinization

    Synthesis and Characterization of High-Photoactivity Electrodeposited Cu<sub>2</sub>O Solar Absorber by Photoelectrochemistry and Ultrafast Spectroscopy

    No full text
    We present a systematic study on the effects of electrodeposition parameters on the photoelectrochemical properties of Cu<sub>2</sub>O. The influence of deposition variables (temperature, pH, and deposition current density) on conductivity has been widely explored in the past for this semiconductor, but the optimization of the electrodeposition process for the photoelectrochemical response in aqueous solutions under AM 1.5 illumination has received far less attention. In this work, we analyze the photoactivity of Cu<sub>2</sub>O films deposited at different conditions and correlate the photoresponse to morphology, film orientation, and electrical properties. The photoelectrochemical response was measured by linear sweep voltammetry under chopped simulated AM 1.5 illumination. The highest photocurrent obtained was −2.4 mA cm<sup>–2</sup> at 0.25 V vs RHE for a film thickness of 1.3 ÎŒm. This is the highest reported value reached so far for this material in an aqueous electrolyte under AM 1.5 illumination. The optical and electrical properties of the most photoactive electrode were investigated by UV–vis spectroscopy and electrochemical impedance, while the minority carrier lifetime and diffusion length were measured by optical-pump THz-probe spectroscopy

    Influence of chemically p-type doped active organic semiconductor on the film thickness versus performance trend in cyanine/C-60 bilayer solar cells

    Get PDF
    Simple bilayer organic solar cells rely on very thin coated films that allow for effective light absorption and charge carrier transport away from the heterojunction at the same time. However, thin films are difficult to coat on rough substrates or over large areas, resulting in adverse shorting and low device fabrication yield. Chemical p-type doping of organic semiconductors can reduce Ohmic losses in thicker transport layers through increased conductivity. By using a Co(III) complex as chemical dopant, we studied doped cyanine dye/C-60 bilayer solar cell performance for increasing dye film thickness. For films thicker than 50 nm, doping increased the power conversion efficiency by more than 30%. At the same time, the yield of working cells increased to 80%. We addressed the fate of the doped cyanine dye, and found no influence of doping on solar cell long term stability

    Organic solvent free PbI2 recycling from perovskite solar cells using hot water

    No full text
    Perovskite solar cells represent an emerging and highly promising renewable energy technology. However, the most efficient perovskite solar cells critically depend on the use of lead. This represents a possible environmental concern potentially limiting the technologies’ commercialization. Here, we demonstrate a facile recycling process for PbI2, the most common lead-based precursor in perovskite absorber material. The process uses only hot water to effectively extract lead from synthetic precursor mixes, plastic- and glass-based perovskites (92.6 – 100% efficiency after two extractions). When the hot extractant is cooled, crystalline PbI2 in high purity (> 95.9%) precipitated with a high yield: from glass-based perovskites, the first cycle of extraction / precipitation was sufficient to recover 94.4 ± 5.6% of Pb, whereas a second cycle yielded another 10.0 ± 5.2% Pb, making the recovery quantitative. The solid extraction residue remaining is consequently deprived of metals and may thus be disposed as non-hazardous waste. Therefore, exploiting the highly temperature-dependent solubility of PbI2 in water provides a straightforward, easy to implement way to efficiently extract lead from PSC at the end-of-life and deposit the extraction residues in a cost-effective manner, mitigating the potential risk of lead leaching at the perovskites’ end-of-life

    Low-Temperature Screen-Printed Metallization for the Scale-Up of Two-Terminal Perovskite-Silicon Tandems

    No full text
    Tandem photovoltaic devices based on perovskite and crystalline silicon (PK/c-Si) absorbers have the potential to push commercial silicon single junction devices beyond their current efficiency limit. However, their scale-up to industrially relevant sizes is largely limited by current fabrication methods which rely on evaporated metallization of the front contact instead of industry standard screen-printed silver grids. To tackle this challenge, we demonstrate how a low-temperature silver paste applied by a screen-printing process can be used for the front metal grid of two-terminal perovskite-silicon tandem structures. Small-area tandem devices with such printed front metallization show minimal thermal degradation when annealed up to 140 degrees C in air, resulting in silver bulk resistivity of <1 x 10(-5) Omega.cm. This printed metallization is then exploited in the fabrication of large area PK/c-Si tandems to achieve a steady-state efficiency of 22.6% over an aperture area of 57.4 cm(2) with a two-bus bar metallization pattern. This result demonstrates the potential of screen-printing metal contacts to enable the realization of large area PK/c-Si tandem devices
    corecore