4,917 research outputs found
Modelling the influence of the process inputs on the removal of surface contaminants from Ti-6Al-4V linear friction welds
The linear friction welding (LFW) process is finding increasing interest from industry for the fabrication of near-net-shape, titanium alloy Ti–6Al–4V, aerospace components. Currently, the removal of surface contaminants, such as oxides and foreign particles, from the weld interface into the flash is not fully understood. To address this problem, two-dimensional (2D) computational models were developed using the finite element analysis (FEA) software DEFORM and validated with experiments. The key findings showed that the welds made with higher applied forces required less burn-off to completely remove the surface contaminants from the interface into the flash; the interface temperature increased as the applied force was decreased or the rubbing velocity increased; and the boundary temperature between the rapid flash formation and negligible material flow was approximately 970 °C. An understanding of these phenomena is of particular interest for the industrialisation of near-net-shape titanium alloy aerospace components.EPSRC, Boeing Company, Welding Institut
Modelling of the workpiece geometry effects on Ti–6Al–4V linear friction welds
Linear friction welding (LFW) is a solid-state joining process that is finding increasing interest from industry for the fabrication of titanium alloy (Ti–6Al–4V) preforms. Currently, the effects of the workpiece geometry on the thermal fields, material flow and interface contaminant removal during processing are not fully understood. To address this problem, two-dimensional (2D) computational models were developed using the finite element analysis (FEA) software DEFORM and validated with experiments. A key finding was that the width of the workpieces in the direction of oscillation (in-plane width) had a much greater effect on the experimental weld outputs than the cross-sectional area. According to the validated models, a decrease of the in-plane width increased the burn-off rate whilst decreasing the interface temperature, TMAZ thickness and the burn-off required to remove the interface contaminants from the weld into the flash. Furthermore, the experimental weld interface consisted of a Widmanstätten microstructure, which became finer as the in-plane width was reduced. These findings have significant, practical benefits and may aid industrialisation of the LFW process.The authors would like to thank the Engineering and Physical Sciences
Research Council (EPSRC), The Boeing Company and The Welding
Institute (TWI) for funding the research presented in this paper
Energy and force analysis of Ti-6Al-4V linear friction welds for computational modeling input and validation data
The linear friction welding (LFW) process is finding increasing use as a manufacturing technology for the production of titanium alloy Ti-6Al-4V aerospace components. Computational models give an insight into the process, however, there is limited experimental data that can be used for either modeling inputs or validation. To address this problem, a design of experiments approach was used to investigate the influence of the LFW process inputs on various outputs for experimental Ti-6Al-4V welds. The finite element analysis software DEFORM was also used in conjunction with the experimental findings to investigate the heating of the workpieces. Key findings showed that the average interface force and coefficient of friction during each phase of the process were insensitive to the rubbing velocity; the coefficient of friction was not coulombic and varied between 0.3 and 1.3 depending on the process conditions; and the interface of the workpieces reached a temperature of approximately approximately 1273 K (1000 °C) at the end of phase 1. This work has enabled a greater insight into the underlying process physics and will aid future modeling investigations.EPSRC, Boeing Company, Welding Institut
Contact inhibition of locomotion and mechanical cross-talk between cell-cell and cell-substrate adhesion determines the pattern of junctional tension in epithelial cell aggregates
We generated a computational approach to analyze the biomechanics of
epithelial cell aggregates, either island or stripes or entire monolayers, that
combines both vertex and contact-inhibition-of-locomotion models to include
both cell-cell and cell-substrate adhesion. Examination of the distribution of
cell protrusions (adhesion to the substrate) in the model predicted high order
profiles of cell organization that agree with those previously seen
experimentally. Cells acquired an asymmetric distribution of basal protrusions,
traction forces and apical aspect ratios that decreased when moving from the
edge to the island center. Our in silico analysis also showed that tension on
cell-cell junctions and apical stress is not homogeneous across the island.
Instead, these parameters are higher at the island center and scales up with
island size, which we confirmed experimentally using laser ablation assays and
immunofluorescence. Without formally being a 3-dimensional model, our approach
has the minimal elements necessary to reproduce the distribution of cellular
forces and mechanical crosstalk as well as distribution of principal stress in
cells within epithelial cell aggregates. By making experimental testable
predictions, our approach would benefit the mechanical analysis of epithelial
tissues, especially when local changes in cell-cell and/or cell-substrate
adhesion drive collective cell behavior.Comment: 39 pages, 8 Figures. Supplementary Information is include
Metastable aluminium atoms floating on the surface of helium nanodroplets
Metal atoms have proved to be sensitive probes of the properties of superfluid helium nanodroplets. To date, all experiments on the doping of helium droplets have concentrated on the attachment of metal atoms in their ground electronic states. Here we report the first examples of metal atoms in excited states becoming attached to helium nanodroplets. The atoms in question are aluminium and they have been generated by laser ablation in a metastable quartet state, which attaches to and remains on the surface of helium droplets. Evidence for a surface location comes from electronic spectra, which consist of very narrow absorption profiles that show very small spectral shifts. Supporting ab initio calculations show there to be an energy incentive for a metastable Al atom to remain on the surface of a helium droplet rather than move to the interior. The results suggest that helium droplets may provide a method for the capture and transport of metastable excited atomic and molecular species
Evaluation of the current knowledge limitations in breast cancer research: a gap analysis
BACKGROUND
A gap analysis was conducted to determine which areas of breast cancer research, if targeted by researchers and funding bodies, could produce the greatest impact on patients.
METHODS
Fifty-six Breast Cancer Campaign grant holders and prominent UK breast cancer researchers participated in a gap analysis of current breast cancer research. Before, during and following the meeting, groups in seven key research areas participated in cycles of presentation, literature review and discussion. Summary papers were prepared by each group and collated into this position paper highlighting the research gaps, with recommendations for action.
RESULTS
Gaps were identified in all seven themes. General barriers to progress were lack of financial and practical resources, and poor collaboration between disciplines. Critical gaps in each theme included: (1) genetics (knowledge of genetic changes, their effects and interactions); (2) initiation of breast cancer (how developmental signalling pathways cause ductal elongation and branching at the cellular level and influence stem cell dynamics, and how their disruption initiates tumour formation); (3) progression of breast cancer (deciphering the intracellular and extracellular regulators of early progression, tumour growth, angiogenesis and metastasis); (4) therapies and targets (understanding who develops advanced disease); (5) disease markers (incorporating intelligent trial design into all studies to ensure new treatments are tested in patient groups stratified using biomarkers); (6) prevention (strategies to prevent oestrogen-receptor negative tumours and the long-term effects of chemoprevention for oestrogen-receptor positive tumours); (7) psychosocial aspects of cancer (the use of appropriate psychosocial interventions, and the personal impact of all stages of the disease among patients from a range of ethnic and demographic backgrounds).
CONCLUSION
Through recommendations to address these gaps with future research, the long-term benefits to patients will include: better estimation of risk in families with breast cancer and strategies to reduce risk; better prediction of drug response and patient prognosis; improved tailoring of treatments to patient subgroups and development of new therapeutic approaches; earlier initiation of treatment; more effective use of resources for screening populations; and an enhanced experience for people with or at risk of breast cancer and their families. The challenge to funding bodies and researchers in all disciplines is to focus on these gaps and to drive advances in knowledge into improvements in patient care
Alcohol management plans in Aboriginal and Torres Strait Islander (Indigenous) Australian communities in Queensland: community residents have experienced favourable impacts but also suffered unfavourable ones
Background: In Australia, 'Alcohol Management Plans' (AMPs) provide the policy infrastructure for State and Commonwealth Governments to address problematic alcohol use among Aboriginal and Torres Strait Islanders. We report community residents' experiences of AMPs in 10 of Queensland's 15 remote Indigenous communities.\ud
\ud
Methods: This cross-sectional study used a two-stage sampling strategy: N = 1211; 588 (48%) males, 623 (52%) females aged ≥18 years in 10 communities. Seven propositions about 'favourable' impacts and seven about 'unfavourable' impacts were developed from semi-structured interviews. For each proposition, one-sample tests of proportions examined participant agreement and multivariable binary logistic regressions assessed influences of gender, age (18–24, 25–44, 45–64, ≥65 years), residence (≥6 years), current drinking and Indigenous status. Confirmatory factor analyses estimated scale reliability (ρ), item loadings and covariances.\ud
\ud
Results: Slim majorities agreed that: AMPs reduced violence (53%, p = 0.024); community a better place to live (54%, 0.012); and children were safer (56%, p < 0.001). More agreed that: school attendance improved (66%, p < 0.001); and awareness of alcohol's harms increased (71%, p < 0.001). Participants were equivocal about improved personal safety (53%, p = 0.097) and reduced violence against women (49%, p = 0.362). The seven 'favourable' items reliably summarized participants' experiences of reduced violence and improved community amenity (ρ = 0.90).\ud
\ud
Stronger agreement was found for six 'unfavourable' items: alcohol availability not reduced (58%, p < 0.001); drinking not reduced (56%, p < 0.001)); cannabis use increased (69%, p < 0.001); more binge drinking (73%, p < 0.001); discrimination experienced (77%, p < 0.001); increased fines, convictions and criminal records for breaching restrictions (90%, p < 0.001). Participants were equivocal (51% agreed, p = 0.365) that police could enforce restrictions effectively. 'Unfavourable' items were not reliably reflected in one group (ρ = 0.48) but in: i) alcohol availability and consumption not reduced and ii) criminalization and discrimination.\ud
\ud
In logistic regressions, longer-term (≥ 6 years) residents more likely agreed that violence against women had reduced and that personal safety had improved but also that criminalization and binge drinking had increased. Younger people disagreed that their community was a better place to live and strongly agreed about discrimination. Current drinkers' views differed little from the sample overall.\ud
\ud
Conclusions: The present Government review provides an opportunity to reinforce 'favourable' outcomes while targeting: illicit alcohol, treatment and diversion services and reconciliation of criminalization and discrimination issues.\ud
\u
The Astropy Problem
The Astropy Project (http://astropy.org) is, in its own words, "a community
effort to develop a single core package for Astronomy in Python and foster
interoperability between Python astronomy packages." For five years this
project has been managed, written, and operated as a grassroots,
self-organized, almost entirely volunteer effort while the software is used by
the majority of the astronomical community. Despite this, the project has
always been and remains to this day effectively unfunded. Further, contributors
receive little or no formal recognition for creating and supporting what is now
critical software. This paper explores the problem in detail, outlines possible
solutions to correct this, and presents a few suggestions on how to address the
sustainability of general purpose astronomical software
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
- …
