645 research outputs found
Form-finding and analysis of bending-active systems using dynamic relaxation
A common challenge for architects and engineers in the development of structurally efficient systems is the generation of good structural forms for a specific set of boundary conditions, a process known as form-finding. Dynamic relaxation is a wellestablished explicit numerical analysis method used for the form-finding and analysis of highly non-linear structures. With the incorporation of bending and clustered elements, the method can be extended for the analysis of complex curved and bending-active structural systems. Bending-active structures employ elastic deformation to generate complex curved shapes. With low computational cost, dynamic relaxation has large potential as a design and analysis technique of novel large span structural systems such as spline stressed membranes and small scale robotics, bio-mechanics and architectural applications made of novel materials such as electro- active polymers (EAP)
Influence of copper on the electronic properties of amorphous chalcogenides
We have studied the influence of alloying copper with amorphous arsenic
sulfide on the electronic properties of this material. In our
computer-generated models, copper is found in two-fold near-linear and
four-fold square-planar configurations, which apparently correspond to Cu(I)
and Cu(II) oxidation states. The number of overcoordinated atoms, both arsenic
and sulfur, grows with increasing concentration of copper. Overcoordinated
sulfur is found in trigonal planar configuration, and overcoordinated
(four-fold) arsenic is in tetrahedral configuration. Addition of copper
suppresses the localization of lone-pair electrons on chalcogen atoms, and
localized states at the top of the valence band are due to Cu 3d orbitals.
Evidently, these additional Cu states, which are positioned at the same
energies as the states due to ([As4]-)-([S_3]+) pairs, are responsible for
masking photodarkening in Cu chalcogenides
RNA-viromics reveals diverse communities of soil RNA viruses with the potential to affect grassland ecosystems across multiple trophic levels
The distribution and diversity of RNA viruses in soil ecosystems are largely unknown, despite their significant impact on public health, ecosystem functions, and food security. Here, we characterise soil RNA viral communities along an altitudinal productivity gradient of peat, managed grassland and coastal soils. We identified 3462 viral contigs in RNA viromes from purified virus-like-particles in five soil-types and assessed their spatial distribution, phylogenetic diversity and potential host ranges. Soil types exhibited minimal similarity in viral community composition, but with >10-fold more viral contigs shared between managed grassland soils when compared with peat or coastal soils. Phylogenetic analyses predicted soil RNA viral communities are formed from viruses of bacteria, plants, fungi, vertebrates and invertebrates, with only 12% of viral contigs belonging to the bacteria-infecting Leviviricetes class. 11% of viral contigs were found to be most closely related to members of the Ourmiavirus genus, suggesting that members of this clade of plant viruses may be far more widely distributed and diverse than previously thought. These results contrast with soil DNA viromes which are typically dominated by bacteriophages. RNA viral communities, therefore, have the potential to exert influence on inter-kingdom interactions across terrestrial biomes
De ongekende samenleving: schattingen en inzichten over irreguliere migranten en economische schaduwactiviteiten
Inleiding en probleemstelling: Overheden in landen met een hoge economische ontwikkeling beschikken doorgaans
over een uitgebreid systeem om hun economie en bevolking te monitoren. Door de uitgebreidheid
en de effectiviteit van deze systemen wordt er meestal van uitgegaan dat de gegevens
van overheden een adequaat beeld schetsen van de werksituatie, het economische
en het sociale leven ‘zoals ze zijn’. Niets is minder waar. De beschikbare informatie lijdt
structureel onder het euvel dat ze voorbijgaat aan een samenleving die weliswaar reëel
bestaat, maar die grotendeels verborgen blijft voor het oog van officiële waarneming en
registratie. Deze ongekende samenleving geeft haar geheimen slechts mondjesmaat prijs.
Tussen de gedocumenteerde werkelijkheid en het ware sociaaleconomische en werkzame
leven van de inwoners van Vlaanderen gaapt een kloof.
Over de oorzaken, de grootte en de veranderingen van deze kloof kan gedebatteerd worden
‑ en dat wordt daadwerkelijk gedaan – maar dat ze bestaat en significant is, wordt
zelfs door oppervlakkige waarneming bevestigd. Waar hebben we het dan over, wanneer
we spreken over een kloof tussen het werkelijke land en datgene dat gedocumenteerd is?
Een drietal illustraties zal duidelijk maken waar het probleem zich situeert. ..
Modelling fish habitat preference with a genetic algorithm-optimized Takagi-Sugeno model based on pairwise comparisons
Species-environment relationships are used for evaluating the current status of target species and the potential impact of natural or anthropogenic changes of their habitat. Recent researches reported that the results are strongly affected by the quality of a data set used. The present study attempted to apply pairwise comparisons to modelling fish habitat preference with Takagi-Sugeno-type fuzzy habitat preference models (FHPMs) optimized by a genetic algorithm (GA). The model was compared with the result obtained from the FHPM optimized based on mean squared error (MSE). Three independent data sets were used for training and testing of these models. The FHPMs based on pairwise comparison produced variable habitat preference curves from 20 different initial conditions in the GA. This could be partially ascribed to the optimization process and the regulations assigned. This case study demonstrates applicability and limitations of pairwise comparison-based optimization in an FHPM. Future research should focus on a more flexible learning process to make a good use of the advantages of pairwise comparisons
Long-term outcomes after percutaneous revascularization of complex coronary bifurcation lesions using a dedicated self-expanding biolimus-eluting stent system
Background: To evaluate long-term clinical outcomes after treatment of complex bifurcation lesions with the AXXESS dedicated self-expanding biolimus A9-eluting bifurcation stent.Methods: Between 2004 and 2013, 123 patients with complex bifurcation lesions were treated in a single-center with the AXXESS stent in the proximal main vessel (MV) and additional drug-eluting stents in branches when required. Median follow-up was 5 years. Primary endpoint was the rate of major adverse cardiac events (MACE). Secondary endpoints included MACE components (cardiac death, non-periprocedural clinical myocardial infarction [MI], target lesion revascularization [TLR] and definite/probable stent thrombosis [ST]) as well as all-cause death, target vessel revascularization (TVR) and non-TVR.Results: During follow-up, 11 (8.9%) patients experienced a MACE, of whom 2 (1.6%) suffered cardiac death, 2 (1.6%) had a non-periprocedural clinical MI requiring TLR, and 7 (5.7%) underwent elective TLR. No definite/probable ST was observed. All-cause death occurred in 9 (7.3%) patients, TVR in 11 (8.9%) and non-TVR in 11 (8.9%). Patients treated for left main (LM) bifurcation lesions were more likely to experience MACE than non-LM bifurcation lesions (25% vs. 6.5%, p = 0.04).Conclusions: Percutaneous revascularization of complex bifurcation lesions with the AXXESS stent is safe and provides excellent long-term results, especially in non-LM lesions
BAG3 Pro209 mutants associated with myopathy and neuropathy relocate chaperones of the CASA-complex to aggresomes
Three missense mutations targeting the same proline 209 (Pro209) codon in the co-chaperone Bcl2-associated athanogene 3 (BAG3) have been reported to cause distal myopathy, dilated cardiomyopathy or Charcot-Marie-Tooth type 2 neuropathy. Yet, it is unclear whether distinct molecular mechanisms underlie the variable clinical spectrum of the rare patients carrying these three heterozygous Pro209 mutations in BAG3. Here, we studied all three variants and compared them to the BAG3_Glu455Lys mutant, which causes dilated cardiomyopathy. We found that all BAG3_Pro209 mutants have acquired a toxic gain-of-function, which causes these variants to accumulate in the form of insoluble HDAC6- and vimentin-positive aggresomes. The aggresomes formed by mutant BAG3 led to a relocation of other chaperones such as HSPB8 and Hsp70, which, together with BAG3, promote the so-called chaperone-assisted selective autophagy (CASA). As a consequence of their increased aggregation-proneness, mutant BAG3 trapped ubiquitinylated client proteins at the aggresome, preventing their efficient clearance. Combined, these data show that all BAG3_Pro209 mutants, irrespective of their different clinical phenotypes, are characterized by a gain-of-function that contributes to the gradual loss of protein homeostasis
- …