Form-finding and analysis of bending-active systems using dynamic relaxation

Abstract

A common challenge for architects and engineers in the development of structurally efficient systems is the generation of good structural forms for a specific set of boundary conditions, a process known as form-finding. Dynamic relaxation is a wellestablished explicit numerical analysis method used for the form-finding and analysis of highly non-linear structures. With the incorporation of bending and clustered elements, the method can be extended for the analysis of complex curved and bending-active structural systems. Bending-active structures employ elastic deformation to generate complex curved shapes. With low computational cost, dynamic relaxation has large potential as a design and analysis technique of novel large span structural systems such as spline stressed membranes and small scale robotics, bio-mechanics and architectural applications made of novel materials such as electro- active polymers (EAP)

    Similar works