50 research outputs found

    Cloning, expression and characterization of alcohol dehydrogenases in the silkworm Bombyx mori

    Get PDF
    Alcohol dehydrogenases (ADH) are a class of enzymes that catalyze the reversible oxidation of alcohols to corresponding aldehydes or ketones, by using either nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP), as coenzymes. In this study, a short-chain ADH gene was identified in Bombyx mori by 5â€Č-RACE PCR. This is the first time the coding region of BmADH has been cloned, expressed, purified and then characterized. The cDNA fragment encoding the BmADH protein was amplified from a pool of silkworm cDNAs by PCR, and then cloned into E. coli expression vector pET-30a(+). The recombinant His-tagged BmADH protein was expressed in E. coli BL21 (DE3), and then purified by metal chelating affinity chromatography. The soluble recombinant BmADH, produced at low-growth temperature, was instrumental in catalyzing the ethanol-dependent reduction of NAD+, thereby indicating ethanol as one of the substrates of BmADH

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Lactam hydrolysis catalyzed by mononuclear metallo-ß-bactamases:A density functional study

    No full text
    Two central steps in the hydrolysis of lactam antibiotics catalyzed by mononuclear metallo--lactamases, formation of the tetrahedral intermediate and its breakdown by proton transfer, are studied for model systems using the density functional B3LYP method. Metallo--lactamases have two metal ion binding sites, one of which is occupied in the mononuclear species. In this work it is assumed that catalysis takes place at zinc site 1, which is modeled by the metal ion, three imidazole rings, and a hydroxide ion. The lactam ring, a minimal model of -lactam antibiotics, is initially coordinating to the zinc ion. Potential proton shuttles from the second (unoccupied) metal-binding site (water, Asp, or Cys) are included in some calculations. The calculated reaction barrier for formation of the tetrahedral intermediate is 13 kcal/mol, close to what is observed experimentally for the rate-limiting step. The barrier for the breakdown of the intermediate is low, 0-10 kcal/mol, if it is assisted by a water molecule or by a Cys or Asp model. Thus, the results indicate that proton transfer is not rate-limiting, and that any of the residues from the second metal site may function as proton shuttle. For most studied systems, the tetrahedral structure is a stable intermediate. Moreover, the C-N bond in the lactam ring is intact in this intermediate, as well as in the following transition state-its cleavage is induced by proton transfer to the nitrogen atom in the lactam ring. However, for the model with Asp as a proton shuttle, attack of the zinc-bond hydroxide ion seems to be concerted with the proton transfer. We have also studied the effect of replacing one of the histidine ligands by an asparagine or glutamine residue, giving a zinc site representative of other subclasses of metallo--lactamases. This has only a small effect on the calculated reaction barriers. Likewise, if the zinc ion is replaced by cadmium, only small changes in the reaction barrier for proton transfer are seen, whereas the barrier for the formation of the tetrahedral intermediate increases by 3 kcal/mol and the intermediate is destabilized by 5 kcal/mol

    Studies on ternary metallo-beta lactamase-inhibitor complexes using electrospray ionization mass spectrometry.

    Get PDF
    Metallo-beta-lactamases (MBLs) are targets for medicinal chemistry as they mediate bacterial resistance to beta-lactam antibiotics. Electrospray-ionization mass spectrometry (ESI-MS) was used to study the inhibition by a set of mercaptocarboxylates of two representative MBLs with different optimal metal stoichiometries for catalysis. BcII is a dizinc MBL (Class B1), whilst the CphA MBL (Class B2) exhibits highest activity with a single zinc ion in the active site. Experimental parameters for the detection of the metallo-enzyme and the metallo-enzyme-inhibitor complexes were evaluated and optimized. Following investigations on the stoichiometry of metal binding, the affinity of the inhibitors was investigated by measuring the relative abundance of the complex compared to the metalloprotein. The results for the BcII enzyme were in general agreement with solution assays and demonstrated that the inhibitors bind to the dizinc form of the BcII enzyme. The results for the CphA(ZnII) complex unexpectedly revealed an increased affinity for the binding of a second metal ion in the presence of thiomandelic acid. The results demonstrate that direct ESI-MS analysis of enzyme:inhibitor complexes is a viable method for screening inhibitors and for the rapid assay of the enzyme:metal:inhibitor ratios
    corecore