20 research outputs found

    The role of soils in delivering Nature's Contributions to People

    Get PDF
    Data accessibility. This article does not contain any additional data. Funding Information:The input of P.S. contributes to Soils-R-GRREAT (NE/ P019455/1) and the input of P.S. and S.D.K. contributes to the European Union’s Horizon 2020 Research and Innovation Programme through project CIRCASA (grant agreement no. 774378). Acknowledgements. T.K.A. acknowledges the support of ‘Towards Integrated Nitrogen Management System (INMS)’ funded by the Global Environment Facility (GEF), executed through the UK’s Natural Environment Research Council (NERC).Peer reviewedPostprin

    Reply to Wassmann et al.: More data at high sampling intensity from medium- and intense-intermittently flooded rice farms is crucial

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.Here, we briefly respond to critique of our study (1) by Wassmann et al. (2). A detailed response to their letter is available online (edf.org/riceN2O)

    Soil-derived Nature’s Contributions to People and their contribution to the UN Sustainable Development Goals

    Get PDF
    Acknowledgments The input of PS contributes to Soils-R-GRREAT (NE/P019455/1) and the input of PS and SK contributes to the European Union's Horizon 2020 Research and Innovation Programme through project CIRCASA (grant agreement no. 774378). PR acknowledges funding from UK Greenhouse Gas Removal Programme (NE/P01982X/2). GB De Deyn acknowledges FoodShot Global for its support. TKA acknowledges the support of “Towards Integrated Nitrogen Management System (INMS) funded by the Global Environment Facility (GEF), executed through the UK’s Natural Environment Research Council (NERC). The input of DG was supported by the New Zealand Ministry of Business, Innovation and Employment (MBIE) strategic science investment fund (SSIF). PMS acknowledges support from the Australian Research Council (Project FT140100610). PM’s work on ecosystem services is supported by a National Science Foundation grant #1853759, “Understanding the Use of Ecosystem Services Concepts in Environmental Policy”. LGC is funded by National Council for Scientific and Technological Development (CNPq, Brazil – grants 421668/2018-0 and 305157/2018-3) and by Lisboa2020 FCT/EU (project 028360). BS acknowledges support from the Lancaster Environment Centre Project.Peer reviewedPostprin

    High nitrous oxide fluxes from rice indicate the need to manage water for both long- and short-term climate impacts

    Get PDF
    Global rice cultivation is estimated to account for 2.5% of current anthropogenic warming because of emissions of methane (CH4), a short-lived greenhouse gas. This estimate assumes a widespread prevalence of continuous flooding of most rice fields and hence does not include emissions of nitrous oxide (N2O), a long-lived greenhouse gas. Based on the belief that minimizing CH4 from rice cultivation is always climate beneficial, current mitigation policies promote increased use of intermittent flooding. However, results from five intermittently flooded rice farms across three agroecological regions in India indicate that N2O emissions per hectare can be three times higher (33 kg-N2O⋅ha−1⋅season−1) than the maximum previously reported. Correlations between N2O emissions and management parameters suggest that N2O emissions from rice across the Indian subcontinent might be 30–45 times higher under intensified use of intermittent flooding than under continuous flooding. Our data further indicate that comanagement of water with inorganic nitrogen and/or organic matter inputs can decrease climate impacts caused by greenhouse gas emissions up to 90% and nitrogen management might not be central to N2O reduction. An understanding of climate benefits/drawbacks over time of different flooding regimes because of differences in N2O and CH4 emissions can help select the most climate-friendly water management regimes for a given area. Region-specific studies of rice farming practices that map flooding regimes and measure effects of multiple comanaged variables on N2O and CH4 emissions are necessary to determine and minimize the climate impacts of rice cultivation over both the short term and long term

    Global change pressures on soils from land use and management

    Get PDF
    Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land-use change, land management and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state-of-the-art understanding of these global change pressures on soils, identify knowledge gaps and research challenges and highlight actions and policies to minimize adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development

    Nitrogen Challenges and Opportunities for Agricultural and Environmental Science in India

    Get PDF
    In the last six decades, the consumption of reactive nitrogen (Nr) in the form of fertilizer in India has been growing rapidly, whilst the nitrogen use efficiency (NUE) of cropping systems has been decreasing. These trends have led to increasing environmental losses of Nr, threatening the quality of air, soils, and fresh waters, and thereby endangering climate-stability, ecosystems, and human-health. Since it has been suggested that the fertilizer consumption of India may double by 2050, there is an urgent need for scientific research to support better nitrogen management in Indian agriculture. In order to share knowledge and to develop a joint vision, experts from the UK and India came together for a conference and workshop on “Challenges and Opportunities for Agricultural Nitrogen Science in India.” The meeting concluded with three core messages: (1) Soil stewardship is essential and legumes need to be planted in rotation with cereals to increase nitrogen fixation in areas of limited Nr availability. Synthetic symbioses and plastidic nitrogen fixation are possibly disruptive technologies, but their potential and implications must be considered. (2) Genetic diversity of crops and new technologies need to be shared and exploited to reduce N losses and support productive, sustainable agriculture livelihoods. Móring et al. Nitrogen Challenges and Opportunities (3) The use of leaf color sensing shows great potential to reduce nitrogen fertilizer use (by 10–15%). This, together with the usage of urease inhibitors in neem-coated urea, and better management of manure, urine, and crop residues, could result in a 20–25% improvement in NUE of India by 2030

    Estimation of the isothermal compressibility from event-by-event multiplicity fluctuation studies

    No full text
    The first estimation of the isothermal compressibility (kT) of matter is presented for a wide range of collision energies from √sNN = 7.7 GeV to 2.76 TeV. kT is estimated with the help of event-byevent charged particle multiplicity fluctuations from experiment. Dynamical fluctuations are extracted by removing the statistical fluctuations obtained from the participant model. kT is also estimated from event generators AMPT, UrQMD, EPOS and a hadron resonance gas model. The values of isothermal compressibility are estimated for the Large Hadron Collider (LHC) energies with the help of the event generators

    Estimation of the isothermal compressibility from event-by-event multiplicity fluctuation studies

    No full text
    The first estimation of the isothermal compressibility (kT_{k_T}) of matter is presented for a wide range of collision energies from sNN\sqrt{s_{NN}}   = 7.7 GeV to 2.76 TeV. kT_{k_T} is estimated with the help of event-byevent charged particle multiplicity fluctuations from experiment. Dynamical fluctuations are extracted by removing the statistical fluctuations obtained from the participant model. kT_{k_T} is also estimated from event generators AMPT, UrQMD, EPOS and a hadron resonance gas model. The values of isothermal compressibility are estimated for the Large Hadron Collider (LHC) energies with the help of the event generators

    Isothermal compressibility of hadronic matter formed in relativistic nuclear collisions

    No full text
    We present the first estimates of isothermal compressibility ( kT ) of hadronic matter formed in relativistic nuclear collisions ( sNN=7.7 GeV to 2.76 TeV) using experimentally observed quantities. kT is related to the fluctuation in particle multiplicity, temperature, and volume of the system formed in the collisions. Multiplicity fluctuations are obtained from the event-by-event distributions of charged particle multiplicities in narrow centrality bins. The dynamical components of the fluctuations are extracted by removing the contributions to the fluctuations from the number of participating nucleons. From the available experimental data, a constant value of kT has been observed as a function of collision energy. The results are compared with calculations from UrQMD, AMPT, and EPOS event generators, and estimations of kT are made for Pb–Pb collisions at the CERN Large Hadron Collider. A hadron resonance gas (HRG) model has been used to calculate kT as a function of collision energy. Our results show a decrease in kT at low collision energies to sNN∌20 GeV , beyond which the kT values remain almost constant.We present the first estimates of isothermal compressibility (\kT) of hadronic matter formed in relativistic nuclear collisions (sNN=7.7\sqrt{s_{\rm NN}} = 7.7 GeV to 2.76~TeV) using experimentally observed quantities. \kT~is related to the fluctuation in particle multiplicity, temperature, and volume of the system formed in the collisions. Multiplicity fluctuations are obtained from the event-by-event distributions of charged particle multiplicities in narrow centrality bins. The dynamical components of the fluctuations are extracted by removing the contributions to the fluctuations from the number of participating nucleons. From the available experimental data, a constant value of \kT~has been observed as a function of collision energy. The results are compared with calculations from UrQMD, AMPT, and EPOS event generators, and estimations of \kT~are made for Pb-Pb collisions at the CERN Large Hadron Collider. A hadron resonance gas (HRG) model has been used to calculate \kT~as a function of collision energy. Our results show a decrease in \kT~at low collision energies to \sNN~∌\sim~20~GeV, beyond which the \kT~values remain almost constant
    corecore