79 research outputs found

    The role of soils in delivering Nature's Contributions to People

    Get PDF
    Data accessibility. This article does not contain any additional data. Funding Information:The input of P.S. contributes to Soils-R-GRREAT (NE/ P019455/1) and the input of P.S. and S.D.K. contributes to the European Union’s Horizon 2020 Research and Innovation Programme through project CIRCASA (grant agreement no. 774378). Acknowledgements. T.K.A. acknowledges the support of ‘Towards Integrated Nitrogen Management System (INMS)’ funded by the Global Environment Facility (GEF), executed through the UK’s Natural Environment Research Council (NERC).Peer reviewedPostprin

    Microbial mobilization of soil phosphorus and sustainable P management in agricultural soils

    Get PDF
    Phosphorus plays a vital role in maintaining soil fertility and securing global food supply by being crucial for plant, human and animal life. Globally phosphorus is mined from geological sediments and most of the mined P is added to agricultural soils to meet the critical need of crop plants for agronomic productivity. However, recovery of P by plants is abysmally low and major amount of added P is fixed in the soil creating a need for addition of P fertilizer. Microorganisms play a fundamental role in mobilizing inorganic and organic P in the soil and the rhizosphere. Wide variety of bacteria, fungi and endophytes solubilizes insoluble P through the production of organic acids, a feature which is genetically controlled and can be suitably manipulated to produce efficient transgenic strains. Plant inoculations with phosphate solubilizing microorganisms (PSMs) during field studies, however, had inconsistent effect on plant growth and crop yields due to variations in soil, crop and environmental factors affecting the survival and colonization of the rhizosphere. Increasing availability of soil P through microbial inoculation will necessitate identification of the most appropriate strains, preparation of effective formulations, and introduction of efficient agronomic managements to ensure delivery and survival of inoculants and associated improvement of P efficiency

    Reply to Wassmann et al.: More data at high sampling intensity from medium- and intense-intermittently flooded rice farms is crucial

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.Here, we briefly respond to critique of our study (1) by Wassmann et al. (2). A detailed response to their letter is available online (edf.org/riceN2O)

    Assessment of reactive nitrogen flows in Bangladesh’s agriculture sector

    Get PDF
    To assess the status of and trends in agricultural nitrogen (N) flows and their wider consequences for Bangladesh, in this study, we analyzed data from national and international bodies. The increased rates of N fertilizer applied for increased food production leaves behind a huge amount of unutilized reactive N (Nr). N fertilizer use is the largest in the crop sector, an important sector, where current annual consumption is 1190 Gg. The present combined annual Nr production from crop, fishery, and livestock sectors is ~600 Gg, while emissions of nitrous oxide (N2O), a potent greenhouse gas, are ~200 Gg. Poor N management results in Nr leaking into the environment, which has increased approximately 16-fold since 1961. One potential consequence is the disruption of ecosystem functioning. The balanced tradeoff between food production and reducing Nr input needs to be achieved. One solution to reducing Nr may be a holistic approach that optimizes N application rates and incorporates waste of one subsector as an input to another applying the principle of the circular economy

    Soil-derived Nature’s Contributions to People and their contribution to the UN Sustainable Development Goals

    Get PDF
    Acknowledgments The input of PS contributes to Soils-R-GRREAT (NE/P019455/1) and the input of PS and SK contributes to the European Union's Horizon 2020 Research and Innovation Programme through project CIRCASA (grant agreement no. 774378). PR acknowledges funding from UK Greenhouse Gas Removal Programme (NE/P01982X/2). GB De Deyn acknowledges FoodShot Global for its support. TKA acknowledges the support of “Towards Integrated Nitrogen Management System (INMS) funded by the Global Environment Facility (GEF), executed through the UK’s Natural Environment Research Council (NERC). The input of DG was supported by the New Zealand Ministry of Business, Innovation and Employment (MBIE) strategic science investment fund (SSIF). PMS acknowledges support from the Australian Research Council (Project FT140100610). PM’s work on ecosystem services is supported by a National Science Foundation grant #1853759, “Understanding the Use of Ecosystem Services Concepts in Environmental Policy”. LGC is funded by National Council for Scientific and Technological Development (CNPq, Brazil – grants 421668/2018-0 and 305157/2018-3) and by Lisboa2020 FCT/EU (project 028360). BS acknowledges support from the Lancaster Environment Centre Project.Peer reviewedPostprin

    High nitrous oxide fluxes from rice indicate the need to manage water for both long- and short-term climate impacts

    Get PDF
    Global rice cultivation is estimated to account for 2.5% of current anthropogenic warming because of emissions of methane (CH4), a short-lived greenhouse gas. This estimate assumes a widespread prevalence of continuous flooding of most rice fields and hence does not include emissions of nitrous oxide (N2O), a long-lived greenhouse gas. Based on the belief that minimizing CH4 from rice cultivation is always climate beneficial, current mitigation policies promote increased use of intermittent flooding. However, results from five intermittently flooded rice farms across three agroecological regions in India indicate that N2O emissions per hectare can be three times higher (33 kg-N2O⋅ha−1⋅season−1) than the maximum previously reported. Correlations between N2O emissions and management parameters suggest that N2O emissions from rice across the Indian subcontinent might be 30–45 times higher under intensified use of intermittent flooding than under continuous flooding. Our data further indicate that comanagement of water with inorganic nitrogen and/or organic matter inputs can decrease climate impacts caused by greenhouse gas emissions up to 90% and nitrogen management might not be central to N2O reduction. An understanding of climate benefits/drawbacks over time of different flooding regimes because of differences in N2O and CH4 emissions can help select the most climate-friendly water management regimes for a given area. Region-specific studies of rice farming practices that map flooding regimes and measure effects of multiple comanaged variables on N2O and CH4 emissions are necessary to determine and minimize the climate impacts of rice cultivation over both the short term and long term

    Global change pressures on soils from land use and management

    Get PDF
    Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land-use change, land management and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state-of-the-art understanding of these global change pressures on soils, identify knowledge gaps and research challenges and highlight actions and policies to minimize adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development

    Analysis of atmospheric ammonia over South and East Asia based on the MOZART-4 model and its comparison with satellite and surface observations

    Get PDF
    Limited availability of atmospheric ammonia (NH3) observations limits our understanding of controls on its spatial and temporal variability and its interactions with the ecosystem. Here we used the Model for Ozone and Related chemical Tracers version 4 (MOZART-4) global chemistry transport model and the Hemispheric Transport of Air Pollution version 2 (HTAP-v2) emission inventory to simulate global NH3 distribution for the year 2010. We presented a first comparison of the model with monthly averaged satellite distributions and limited ground-based observations available across South Asia. The MOZART-4 simulations over South Asia and East Asia were evaluated with the NH3 retrievals obtained from the Infrared Atmospheric Sounding Interferometer (IASI) satellite and 69 ground-based monitoring stations for air quality across South Asia and 32 ground-based monitoring stations from the Nationwide Nitrogen Deposition Monitoring Network (NNDMN) of China. We identified the northern region of India (Indo-Gangetic Plain, IGP) as a hotspot for NH3 in Asia, both using the model and satellite observations. In general, a close agreement was found between yearly averaged NH3 total columns simulated by the model and IASI satellite measurements over the IGP, South Asia (r=0.81), and the North China Plain (NCP), East Asia (r=0.90). However, the MOZART-4-simulated NH3 column was substantially higher over South Asia than East Asia, as compared with the IASI retrievals, which show smaller differences. Model-simulated surface NH3 concentrations indicated smaller concentrations in all seasons than surface NH3 measured by the ground-based observations over South and East Asia, although uncertainties remain in the available surface NH3 measurements. Overall, the comparison of East Asia and South Asia using both MOZART-4 model and satellite observations showed smaller NH3 columns in East Asia compared with South Asia for comparable emissions, indicating rapid dissipation of NH3 due to secondary aerosol formation, which can be explained by larger emissions of acidic precursor gases in East Asia

    Nitrogen Challenges and Opportunities for Agricultural and Environmental Science in India

    Get PDF
    In the last six decades, the consumption of reactive nitrogen (Nr) in the form of fertilizer in India has been growing rapidly, whilst the nitrogen use efficiency (NUE) of cropping systems has been decreasing. These trends have led to increasing environmental losses of Nr, threatening the quality of air, soils, and fresh waters, and thereby endangering climate-stability, ecosystems, and human-health. Since it has been suggested that the fertilizer consumption of India may double by 2050, there is an urgent need for scientific research to support better nitrogen management in Indian agriculture. In order to share knowledge and to develop a joint vision, experts from the UK and India came together for a conference and workshop on “Challenges and Opportunities for Agricultural Nitrogen Science in India.” The meeting concluded with three core messages: (1) Soil stewardship is essential and legumes need to be planted in rotation with cereals to increase nitrogen fixation in areas of limited Nr availability. Synthetic symbioses and plastidic nitrogen fixation are possibly disruptive technologies, but their potential and implications must be considered. (2) Genetic diversity of crops and new technologies need to be shared and exploited to reduce N losses and support productive, sustainable agriculture livelihoods. Móring et al. Nitrogen Challenges and Opportunities (3) The use of leaf color sensing shows great potential to reduce nitrogen fertilizer use (by 10–15%). This, together with the usage of urease inhibitors in neem-coated urea, and better management of manure, urine, and crop residues, could result in a 20–25% improvement in NUE of India by 2030
    corecore