21 research outputs found
Review Policy Moderates the Correlation Between CiteScore and JIF For BMC Journals
This article examines the relationship between four review policies (RP) run by different
BioMed Central (BMC) journals, namely single-blind peer review (SBPR), double-blind
peer review (DBPR), open peer review (OPR), and transparent peer review (TPR), and
CiteScore and Journal impact factor (JIF). As of December 12, 2021, BMC publishes
306 journals, of which 14 were discontinued. The final data set was 213 journals with
data on CiteScore and JIF. Descriptive statistics and the use of violin and mosaic plots
were used. Normality tests were conducted and non-parametric correlation and analysis
of variance and Mann Whitney tests were used. Moderation analysis was used to
assess the extent of the relationship between CiteScore and JIF. 14 (4.8%) are run with
DBPR, and 22 (7.5%), 211 (72.3%) and 45 (15.4%) are run with OPR, SBPR and TPR
respectively. Analysis of the final dataset shows that the mean, median, and standard
deviation of the CiteScore of the 213 journals are 5.64, 4.80, and 3.65, respectively,
while the mean, median, and standard deviation of the JIF of the 213 journals are 4.27,
3.36 and 2.90. In descending order, the CiteScore and JIF across the four RP are
highest in DBPR, SBPR, OPR, and TPR. There is a strong positive correlation (Spearman rho = 0.87318, p-value < 8.7e-68) between the CiteScore and JIF of the 213
BMC journals. Mann Whitney test (U = 14771.5, Wilcoxon W = 37562.5, Z = −6.228, pvalue
< 0.000) shows that there is an evidence of significance median differences
between the CiteScore and JIF of the 213 journals. There are significant median
differences in the CiteScore in JIF across the four review policies. Finally, the RP
moderates the relationship between CiteScore and JIF and between JIF and CiteScore,
respectively. This article reveals that the review policies adopted by BMC journals are
somewhat related to the journal metrics that measure the impact, prestige, relevance,
and acceptability of the respective journals
VGEA: an RNA viral assembly toolkit.
Next generation sequencing (NGS)-based studies have vastly increased our understanding of viral diversity. Viral sequence data obtained from NGS experiments are a rich source of information, these data can be used to study their epidemiology, evolution, transmission patterns, and can also inform drug and vaccine design. Viral genomes, however, represent a great challenge to bioinformatics due to their high mutation rate and forming quasispecies in the same infected host, bringing about the need to implement advanced bioinformatics tools to assemble consensus genomes well-representative of the viral population circulating in individual patients. Many tools have been developed to preprocess sequencing reads, carry-out de novo or reference-assisted assembly of viral genomes and assess the quality of the genomes obtained. Most of these tools however exist as standalone workflows and usually require huge computational resources. Here we present (Viral Genomes Easily Analyzed), a Snakemake workflow for analyzing RNA viral genomes. VGEA enables users to map sequencing reads to the human genome to remove human contaminants, split bam files into forward and reverse reads, carry out de novo assembly of forward and reverse reads to generate contigs, pre-process reads for quality and contamination, map reads to a reference tailored to the sample using corrected contigs supplemented by the user's choice of reference sequences and evaluate/compare genome assemblies. We designed a project with the aim of creating a flexible, easy-to-use and all-in-one pipeline from existing/stand-alone bioinformatics tools for viral genome analysis that can be deployed on a personal computer. VGEA was built on the Snakemake workflow management system and utilizes existing tools for each step: fastp (Chen et al., 2018) for read trimming and read-level quality control, BWA (Li & Durbin, 2009) for mapping sequencing reads to the human reference genome, SAMtools (Li et al., 2009) for extracting unmapped reads and also for splitting bam files into fastq files, IVA (Hunt et al., 2015) for de novo assembly to generate contigs, shiver (Wymant et al., 2018) to pre-process reads for quality and contamination, then map to a reference tailored to the sample using corrected contigs supplemented with the user's choice of existing reference sequences, SeqKit (Shen et al., 2016) for cleaning shiver assembly for QUAST, QUAST (Gurevich et al., 2013) to evaluate/assess the quality of genome assemblies and MultiQC (Ewels et al., 2016) for aggregation of the results from fastp, BWA and QUAST. Our pipeline was successfully tested and validated with SARS-CoV-2 (n = 20), HIV-1 (n = 20) and Lassa Virus (n = 20) datasets all of which have been made publicly available. VGEA is freely available on GitHub at: https://github.com/pauloluniyi/VGEA under the GNU General Public License
Unavailability of Essential Obstetric Care Services in a Local Government Area of South-West Nigeria
This paper reports the findings at baseline in a multi-phase project
that aimed at reducing maternal morta-lity in a local government area
(LGA) of South-West Nigeria. The objectives were to determine the
avail-ability of essential obstetric care (EOC) services in the LGA and
to assess the quality of existing services. The first phase of this
interventional study, which is the focus of this paper, consisted of a
baseline health facility and needs assessment survey using instruments
adapted from the United Nations guidelines. Twenty-one of 26 health
facilities surveyed were public facilities, and five were privately
owned. None of the facilities met the criteria for a basic EOC
facility, while only one private facility met the criteria for a
comprehensive EOC facility. Three facilities employed a nurse and/or a
midwife, while unskilled health attendants manned 46% of the
facilities. No health worker in the LGA had ever been trained in
lifesaving skills. There was a widespread lack of basic EOC equipment
and supplies. The study concluded that there were major deficiencies in
the supply side of obstetric care services in the LGA, and EOC was
almost non-existent. This result has implications for interventions for
the reduction of maternal mortality in the LGA and in Nigeria
Recommended from our members
A modified anthrax toxin-based enzyme-linked immunospot assay reveals robust T cell responses in symptomatic and asymptomatic Ebola virus exposed individuals
Background
Ebola virus (EBOV) caused more than 11,000 deaths during the 2013–2016 epidemic in West Africa without approved vaccines or immunotherapeutics. Despite its high lethality in some individuals, EBOV infection can produce little to no symptoms in others. A better understanding of the immune responses in individuals who experienced minimally symptomatic and asymptomatic infection could aid the development of more effective vaccines and antivirals against EBOV and related filoviruses.
Methodology/Principle findings
Between August and November 2017, blood samples were collected from 19 study participants in Lagos, Nigeria, including 3 Ebola virus disease (EVD) survivors, 10 individuals with documented close contact with symptomatic EVD patients, and 6 control healthcare workers for a cross-sectional serosurvey and T cell analysis. The Lagos samples, as well as archived serum collected from healthy individuals living in surrounding areas of the 1976 Democratic Republic of Congo (DRC) epidemic, were tested for EBOV IgG using commercial enzyme-linked immunosorbent assays (ELISAs) and Western blots. We detected antibodies in 3 out of 3 Lagos survivors and identified 2 seropositive individuals not known to have ever been infected. Of the DRC samples tested, we detected antibodies in 9 out of 71 (12.7%). To characterize the T cell responses in the Lagos samples, we developed an anthrax toxin-based enzyme-linked immunospot (ELISPOT) assay. The seropositive asymptomatic individuals had T cell responses against EBOV nucleoprotein, matrix protein, and glycoprotein 1 that were stronger in magnitude compared to the survivors.
Conclusion/Significance
Our data provide further evidence of EBOV exposure in individuals without EVD-like illness and, for the first time, demonstrate that these individuals have T cell responses that are stronger in magnitude compared to severe cases. These findings suggest that T cell immunity may protect against severe EVD, which has important implications for vaccine development
Emergence and spread of two SARS-CoV-2 variants of interest in Nigeria.
Identifying the dissemination patterns and impacts of a virus of economic or health importance during a pandemic is crucial, as it informs the public on policies for containment in order to reduce the spread of the virus. In this study, we integrated genomic and travel data to investigate the emergence and spread of the SARS-CoV-2 B.1.1.318 and B.1.525 (Eta) variants of interest in Nigeria and the wider Africa region. By integrating travel data and phylogeographic reconstructions, we find that these two variants that arose during the second wave in Nigeria emerged from within Africa, with the B.1.525 from Nigeria, and then spread to other parts of the world. Data from this study show how regional connectivity of Nigeria drove the spread of these variants of interest to surrounding countries and those connected by air-traffic. Our findings demonstrate the power of genomic analysis when combined with mobility and epidemiological data to identify the drivers of transmission, as bidirectional transmission within and between African nations are grossly underestimated as seen in our import risk index estimates
A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.
The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.
Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century