104 research outputs found

    A Somatically Diversified Defense Factor, FREP3, Is a Determinant of Snail Resistance to Schistosome Infection

    Get PDF
    Schistosomiasis, a neglected tropical disease, owes its continued success to freshwater snails that support production of prolific numbers of human-infective cercariae. Encounters between schistosomes and snails do not always result in the snail becoming infected, in part because snails can mount immune responses that prevent schistosome development. Fibrinogen-related protein 3 (FREP3) has been previously associated with snail defense against digenetic trematode infection. It is a member of a large family of immune molecules with a unique structure consisting of one or two immunoglobulin superfamily domains connected to a fibrinogen domain; to date fibrinogen containing proteins with this arrangement are found only in gastropod molluscs. Furthermore, specific gastropod FREPs have been shown to undergo somatic diversification. Here we demonstrate that siRNA mediated knockdown of FREP3 results in a phenotypic loss of resistance to Schistosoma mansoni infection in 15 of 70 (21.4%) snails of the resistant BS-90 strain of Biomphalaria glabrata. In contrast, none of the 64 control BS-90 snails receiving a GFP siRNA construct and then exposed to S. mansoni became infected. Furthermore, resistance to S. mansoni was overcome in 22 of 48 snails (46%) by pre-exposure to another digenetic trematode, Echinostoma paraensei. Loss of resistance in this case was shown by microarray analysis to be associated with strong down-regulation of FREP3, and other candidate immune molecules. Although many factors are certainly involved in snail defense from trematode infection, this study identifies for the first time the involvement of a specific snail gene, FREP3, in the phenotype of resistance to the medically important parasite, S. mansoni. The results have implications for revealing the underlying mechanisms involved in dictating the range of snail strains used by S. mansoni, and, more generally, for better understanding the phenomena of host specificity and host switching. It also highlights the role of a diversified invertebrate immune molecule in defense against a human pathogen. It suggests new lines of investigation for understanding how susceptibility of snails in areas endemic for S. mansoni could be manipulated and diminished

    Will all scientists working on snails and the diseases they transmit please stand up?

    Get PDF
    Copyright © 2012 Adema et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.No abstract available

    Differential spatial repositioning of activated genes in Biomphalaria glabrata snails infected with Schistosoma mansoni

    Get PDF
    Copyright @ 2014 Arican-Goktas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Schistosomiasis is an infectious disease infecting mammals as the definitive host and fresh water snails as the intermediate host. Understanding the molecular and biochemical relationship between the causative schistosome parasite and its hosts will be key to understanding and ultimately treating and/or eradicating the disease. There is increasing evidence that pathogens that have co-evolved with their hosts can manipulate their hosts' behaviour at various levels to augment an infection. Bacteria, for example, can induce beneficial chromatin remodelling of the host genome. We have previously shown in vitro that Biomphalaria glabrata embryonic cells co-cultured with schistosome miracidia display genes changing their nuclear location and becoming up-regulated. This also happens in vivo in live intact snails, where early exposure to miracidia also elicits non-random repositioning of genes. We reveal differences in the nuclear repositioning between the response of parasite susceptible snails as compared to resistant snails and with normal or live, attenuated parasites. Interestingly, the stress response gene heat shock protein (Hsp) 70 is only repositioned and then up-regulated in susceptible snails with the normal parasite. This movement and change in gene expression seems to be controlled by the parasite. Other differences in the behaviour of genes support the view that some genes are responding to tissue damage, for example the ferritin genes move and are up-regulated whether the snails are either susceptible or resistant and upon exposure to either normal or attenuated parasite. This is the first time host genome reorganisation has been seen in a parasitic host and only the second time for any pathogen. We believe that the parasite elicits a spatio-epigenetic reorganisation of the host genome to induce favourable gene expression for itself and this might represent a fundamental mechanism present in the human host infected with schistosome cercariae as well as in other host-pathogen relationships.NIH and Sandler Borroughs Wellcome Travel Fellowshi

    Release of Lungworm Larvae from Snails in the Environment: Potential for Alternative Transmission Pathways

    Get PDF
    Background: Gastropod-borne parasites may cause debilitating clinical conditions in animals and humans following the consumption of infected intermediate or paratenic hosts. However, the ingestion of fresh vegetables contaminated by snail mucus and/or water has also been proposed as a source of the infection for some zoonotic metastrongyloids (e.g., Angiostrongylus cantonensis). In the meantime, the feline lungworms Aelurostrongylus abstrusus and Troglostrongylus brevior are increasingly spreading among cat populations, along with their gastropod intermediate hosts. The aim of this study was to assess the potential of alternative transmission pathways for A. abstrusus and T. brevior L3 via the mucus of infected Helix aspersa snails and the water where gastropods died. In addition, the histological examination of snail specimens provided information on the larval localization and inflammatory reactions in the intermediate host. Methodology/Principal Findings: Twenty-four specimens of H. aspersa received ~500 L1 of A. abstrusus and T. brevior, and were assigned to six study groups. Snails were subjected to different mechanical and chemical stimuli throughout 20 days in order to elicit the production of mucus. At the end of the study, gastropods were submerged in tap water and the sediment was observed for lungworm larvae for three consecutive days. Finally, snails were artificially digested and recovered larvae were counted and morphologically and molecularly identified. The anatomical localization of A. abstrusus and T. brevior larvae within snail tissues was investigated by histology. L3 were detected in the snail mucus (i.e., 37 A. abstrusus and 19 T. brevior) and in the sediment of submerged specimens (172 A. abstrusus and 39 T. brevior). Following the artificial digestion of H. aspersa snails, a mean number of 127.8 A. abstrusus and 60.3 T. brevior larvae were recovered. The number of snail sections positive for A. abstrusus was higher than those for T. brevior. Conclusions: Results of this study indicate that A. abstrusus and T. brevior infective L3 are shed in the mucus of H. aspersa or in water where infected gastropods had died submerged. Both elimination pathways may represent alternative route(s) of environmental contamination and source of the infection for these nematodes under field conditions and may significantly affect the epidemiology of feline lungworms. Considering that snails may act as intermediate hosts for other metastrongyloid species, the environmental contamination by mucus-released larvae is discussed in a broader context

    The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms

    Get PDF
    © 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]

    Improving the Performance in Occupational Health and Safety Management in the Electric Sector: An Integrated Methodology Using Fuzzy Multicriteria Approach

    Get PDF
    The electric sector is fundamental for the economic and social development of society, impacting on essential aspects such as health, education, employment generation, industrial production, and the provision of various services. In addition to the above, the growing trend in energy consumption worldwide could increase, according to expert estimates, up to 40% by 2030, which in turn increases the efforts of the public and private sector to meet increasing demands and increase access to energy services under requirements of reliability and quality. However, the electricity sector presents challenges and complexities, one of which is the reduction of health and safety risks for workers, service users, and other stakeholders. In many countries, this sector is classified as high risk in occupational safety and health, due to its complexity and the impact of accidents and occupational diseases on the health of workers, in infrastructure, in operating costs and competitiveness of the energy sector. Worldwide, there are rigorous regulations for the electricity sector, from local and national government regulations to international standards to guarantee health and safety conditions. However, it is necessary to develop objective and comprehensive methodologies for evaluating occupational safety and health performance that provides solutions for the electricity sector, not only to comply with standards and regulations also as a continuous improvement tool that supports the decision-making processes given the complexity of the industry and the multiple criteria that are taken into account when evaluating and establishing improvement strategies. In scientific literature, different studies focus on the analysis of accident statistics, the factors that affect accidents and occupational diseases, and the risk assessment of the sector. Despite these considerations, studies that focus directly on the development of hybrid methodologies for the evaluation and improvement of performance in occupational safety and health in the electrical sector, under multiple criteria and uncertainty are mostly limited. Therefore, this document presents an integrated methodology for improving the performance in occupational health and safety in the electric sector through the application of two techniques of Multi-criteria Decision Methods (MCDM) uses in environments under uncertainly. First, the fuzzy Analytic Hierarchy Process (FAHP) is applied to estimate the initial relative weights of criteria and sub-criteria. The fuzzy set theory is incorporated to represent the uncertainty of decision-makers’ preferences. Then, the Decision-making Trial and Evaluation Laboratory (DEMATEL) used for evaluating the interrelations and feedback among criteria and sub-criteria. FAHP and DEMATEL are later combined for calculating the final criteria and sub-criteria weights under vagueness and interdependence. Subsequently, we applied the proposed methodology in a company of the energy sector for diagnosis of performance in OHS to establish improvement proposals, the work path, and implementation costs. Finally, we evaluate the impact of the strategies applied in the improvement of the performance of the company

    Fibrinogen-related proteins in ixodid ticks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fibrinogen-related proteins with lectin activity are believed to be part of the tick innate immune system. Several fibrinogen-related proteins have been described and characterised mainly on the basis of their cDNA sequences while direct biochemical evidence is missing. One of them, the haemolymph lectin Dorin M from the tick <it>Ornithodoros moubata </it>was isolated and characterised in more depth.</p> <p>Results</p> <p>Several fibrinogen-related proteins were detected in the haemolymph of ixodid ticks <it>Dermacentor marginatus</it>, <it>Rhipicephalus appendiculatus</it>, <it>R. pulchellus</it>, and <it>R. sanguineus</it>. These proteins were recognised by sera directed against the tick lectin Dorin M and the haemagglutination activity of the ticks <it>R. appendiculatus </it>and <it>D. marginatus</it>. Cross-reactivity of the identified proteins with antibodies against the fibrinogen domain of the human ficolin was also shown. The carbohydrate-binding ability of tick haemolymph was confirmed by haemagglutination activity assays, and this activity was shown to be inhibited by neuraminic acid and sialylated glycoproteins as well as by N-acetylated hexosamines. The fibrinogen-related proteins were shown to be glycosylated and they were localised in salivary glands, midguts, and haemocytes of <it>D. marginatus</it>. Hemelipoglycoprotein was also recognised by sera directed against the fibrinogen-related proteins in all three <it>Rhipicephalus </it>species as well as in <it>D. marginatus</it>. However, this protein does not contain the fibrinogen domain and thus, the binding possibly results from the structure similarity between hemelipoglycoprotein and the fibrinogen domain.</p> <p>Conclusions</p> <p>The presence of fibrinogen-related proteins was shown in the haemolymph of four tick species in high abundance. Reactivity of antibodies directed against ficolin or fibrinogen-related proteins with proteins which do not contain the fibrinogen domain points out the importance of sequence analysis of the identified proteins in further studies. Previously observed expression of fibrinogen-related proteins in haemocytes together with the results of this study suggest involvement of fibrinogen-related proteins in tick immunity processes. Thus, they have potential as targets for anti-tick vaccines and as antimicrobial proteins in pharmacology. Research on fibrinogen-related proteins could reveal further details of tick innate immunity processes.</p

    Dendritic cell vaccination and immune monitoring

    Get PDF
    We exploited dendritic cells (DC) to vaccinate melanoma patients. We recently demonstrated a statistical significant correlation between favorable clinical outcome and the presence of vaccine-related tumor antigen-specific T cells in delayed type hypersensitivity (DTH) skin biopsies. However, favorable clinical outcome is only observed in a minority of the treated patients. Therefore, it is obvious that current DC-based protocols need to be improved. For this reason, we study in small proof of principle trials the fate, interactions and effectiveness of the injected DC

    Influence of 'Trichobilharzia regenti' (Digenea: Schistosomatidae) on the defence activity of 'Radix lagotis' (Lymnaeidae) haemocytes

    Get PDF
    Radix lagotis is an intermediate snail host of the nasal bird schistosome Trichobilharzia regenti. Changes in defence responses in infected snails that might be related to host-parasite compatibility are not known. This study therefore aimed to characterize R. lagotis haemocyte defence mechanisms and determine the extent to which they are modulated by T. regenti. Histological observations of R. lagotis infected with T. regenti revealed that early phases of infection were accompanied by haemocyte accumulation around the developing larvae 2–36 h post exposure (p.e.) to the parasite. At later time points, 44–92 h p.e., no haemocytes were observed around T. regenti. Additionally, microtubular aggregates likely corresponding to phagocytosed ciliary plates of T. regenti miracidia were observed within haemocytes by use of transmission electron microscopy. When the infection was in the patent phase, haemocyte phagocytic activity and hydrogen peroxide production were significantly reduced in infected R. lagotis when compared to uninfected counterparts, whereas haemocyte abundance increased in infected snails. At a molecular level, protein kinase C (PKC) and extracellular-signal regulated kinase (ERK) were found to play an important role in regulating these defence reactions in R. lagotis. Moreover, haemocytes from snails with patent infection displayed lower PKC and ERK activity in cell adhesion assays when compared to those from uninfected snails, which may therefore be related to the reduced defence activities of these cells. These data provide the first integrated insight into the immunobiology of R. lagotis and demonstrate modulation of haemocyte-mediated responses in patent T. regenti infected snails. Given that immunomodulation occurs during patency, interference of snail-host defence by T. regenti might be important for the sustained production and/or release of infective cercariae
    corecore