165 research outputs found

    Oxidative stress in Duchenne muscular dystrophy: focus on the NRF2 redox pathway

    Get PDF
    Oxidative stress is involved in the pathogenesis of Duchenne muscular dystrophy (DMD), an X-linked genetic disorder caused by mutations in the dystrophin gene and characterized by progressive, lethal muscle degeneration and chronic inflammation. In this study, we explored the expression and signaling pathway of a master player of the anti-oxidant and anti-inflammatory response, namely NRF2, in muscle biopsies of DMD patients. We classified DMD patients in two age groups (Class I, 0-2 years and Class II, 2-9 years), in order to evaluate the antioxidant pathway expression during the disease progression. We observed that altered enzymatic antioxidant responses, increased levels of oxidized glutathione and oxidative damage are differently modulated in the two age classes of patients and well correlate with the severity of pathology. Interestingly, we also observed a modulation of relevant markers of the inflammatory response, such as heme oxygenase 1 and IL-6, suggesting a link between oxidative stress and chronic inflammatory response. Of note, using a transgenic mouse model, we demonstrated that IL-6 overexpression parallels the antioxidant expression profile and the severity of dystrophic muscle observed in DMD patients. This study advances our understanding of the pathogenic mechanisms underlying DMD and defines the critical role of oxidative stress on muscle wasting with clear implications for disease pathogenesis and therapy in human

    Oxidative stress in Duchenne muscular dystrophy: focus on the NRF2 redox pathway

    Get PDF
    Oxidative stress is involved in the pathogenesis of Duchenne muscular dystrophy (DMD), an X-linked genetic disorder caused by mutations in the dystrophin gene and characterized by progressive, lethal muscle degeneration and chronic inflammation. In this study, we explored the expression and signaling pathway of a master player of the anti-oxidant and anti-inflammatory response, namely NRF2, in muscle biopsies of DMD patients. We classified DMD patients in two age groups (Class I, 0-2 years and Class II, 2-9 years), in order to evaluate the antioxidant pathway expression during the disease progression. We observed that altered enzymatic antioxidant responses, increased levels of oxidized glutathione and oxidative damage are differently modulated in the two age classes of patients and well correlate with the severity of pathology. Interestingly, we also observed a modulation of relevant markers of the inflammatory response, such as heme oxygenase 1 and IL-6, suggesting a link between oxidative stress and chronic inflammatory response. Of note, using a transgenic mouse model, we demonstrated that IL-6 overexpression parallels the antioxidant expression profile and the severity of dystrophic muscle observed in DMD patients. This study advances our understanding of the pathogenic mechanisms underlying DMD and defines the critical role of oxidative stress on muscle wasting with clear implications for disease pathogenesis and therapy in human

    miRNAs as serum biomarkers for Duchenne muscular dystrophy

    Get PDF
    Dystrophin absence in Duchenne muscular dystrophy (DMD) causes severe muscle degeneration. We describe that, as consequence of fibre damage, specific muscle-miRNAs are released in to the bloodstream of DMD patients and their levels correlate with the severity of the disease. The same miRNAs are abundant also in the blood of mdx mice and recover to wild-type levels in animals ‘cured’ through exon skipping. Even though creatine kinase (CK) blood levels have been utilized as diagnostic markers of several neuromuscular diseases, including DMD, we demonstrate that they correlate less well with the disease severity. Although the analysis of a larger number of patients should allow to obtain more refined correlations with the different stages of disease progression, we propose that miR-1, miR-133, and miR-206 are new and valuable biomarkers for the diagnosis of DMD and possibly also for monitoring the outcomes of therapeutic interventions in humans. Despite many different DMD therapeutic approaches are now entering clinical trials, a unifying method for assessing the benefit of different treatments is still lacking

    TMEM5-associated dystroglycanopathy presenting with CMD and mild limb-girdle muscle involvement

    Get PDF
    The dystroglycanopathies, which are caused by reduced glycosylation of alpha-dystroglycan, are a heterogeneous group of neurodegenerative disorders characterized by variable brain and skeletal muscle involvement. Recently, mutations in TMEM5 have been described in severe dystroglycanopathies. We present the clinical, molecular and neuroimaging features of an Italian boy who had delayed developmental milestones with mild limb-girdle muscle involvement, bilateral frontotemporal polymicrogyria, moderate intellectual disability, and no cerebellar involvement. He also presented a cochlear dysplasia and harbored a reported mutation (p.A47Rfs*42) in TMEM5, detected using targeted next-generation sequencing. The relatively milder muscular phenotype and associated structural brain abnormalities distinguish this case from previously reported patients with severe dystroglycanopathies and expand the spectrum of TMEM5-associated disorders

    Translational approach to address therapy in myotonia permanens due to a new SCN4A mutation

    Get PDF
    Objective: We performed a clinical, functional, and pharmacologic characterization of the novel p.P1158L Nav1.4 mutation identified in a young girl presenting a severe myotonic phenotype. Methods: Wild-type hNav1.4 channel and P1158L mutant were expressed in tsA201 cells for functional and pharmacologic studies using patch-clamp. Results: The patient shows pronounced myotonia, slowness of movements, and generalized muscle hypertrophy. Because of general discomfort with mexiletine, she was given flecainide with satisfactory response. In vitro, mutant channels show a slower current decay and a rightward shift of the voltage dependence of fast inactivation. The voltage dependence of activation and slow inactivation were not altered. Mutant channels were less sensitive to mexiletine, whereas sensitivity to flecainide was not altered. The reduced inhibition of mutant channels by mexiletine was also observed using clinically relevant drug concentrations in a myotonic-like condition. Conclusions: Clinical phenotype and functional alterations of P1158L support the diagnosis of myotonia permanens. Impairment of fast inactivation is consistent with the possible role of the channel domain III S4-S5 loop in the inactivation gate docking site. The reduced sensitivity of P1158L to mexiletine may have contributed to the unsatisfactory response of the patient. The success of flecainide therapy underscores the usefulness of in vitro functional studies to help in the choice of the best drug for each individual

    Myotonia permanens with Nav1.4-G1306E displays varied phenotypes during course of life

    Get PDF
    Myotonia permanens due to Nav1.4-G1306E is a rare sodium channelopathy with potentially life-threatening respiratory complications. Our goal was to study phenotypic variability throughout life

    Somatic mosaicism represents an underestimated event underlying collagen 6-related disorders

    Get PDF
    Background: Collagen VI-related disorders (COL6-RD) are a group of heterogenous muscular diseases due to mutations in the COL6A1, COL6A2 and COL6A3 genes, encoding for collagen VI, a critical component of the extracellular matrix. Ullrich congenital muscle disorder and Bethlem myopathy represent the ends of a clinical spectrum that includes intermediate phenotypes of variable severity. UCMD are caused by recessive loss of function mutations or de-novo dominant-negative mutations. The intermediate phenotype and BM are more commonly caused by dominantly acting mutations, and less commonly by recessive mutations. Recently parental mosaicism for dominant mutations in COL6 have been reported in four COL6-RD families and germinal mosaicism has been also identified in a family with recurrence of UCMD in two half-sibs. Methods and results: Here we report three unrelated patients affected by a COL6-RD who carried de novo mosaic mutations in COL6A genes. These mutations, missed by Sanger sequencing, were identified by next generation sequencing. Conclusions: This report highlights the importance of a complete diagnostic workup when clinical and histological finding are consistent with a COL6-RD and strengthen the impression that mosaicisms are underestimated events underlying COL6-RD. (C) 2017 The Authors. Published by Elsevier Ltd on behalf of European Paediatric Neurology Society.Peer reviewe

    Nusinersen mitigates neuroinflammation in severe spinal muscular atrophy patients

    Get PDF
    Background: Neuroinflammation contributes to the onset and progression of neurodegenerative diseases, but has not been specifically investigated in patients affected by severe and milder forms of spinal muscular atrophy (SMA). Methods: In this two-center retrospective study, we investigated signatures of neuroinflammation in forty-eight pediatric male and female SMA1 (n = 18), male and female SMA2 (n = 19), and female SMA3 (n = 11) patients, as well as in a limited number of male and female non-neurological control subjects (n = 4). We employed a Bio-Plex multiplex system based on xMAP technology and performed targeted quantitative analysis of a wide range of pro- and anti-inflammatory cytokines (chemokines, interferons, interleukins, lymphokines and tumor necrosis factors) and neurotrophic factors in the cerebrospinal fluid (CSF) of the study cohort before and after Nusinersen treatment at loading and maintenance stages. Results: We find a significant increase in the levels of several pro-inflammatory cytokines (IL-6, IFN-γ, TNF-α, IL-2, IL-8, IL-12, IL-17, MIP-1α, MCP-1, and Eotaxin) and neurotrophic factors (PDGF-BB and VEGF) in the CSF of SMA1 patients relative to SMA2 and SMA3 individuals, who display levels in the range of controls. We also find that treatment with Nusinersen significantly reduces the CSF levels of some but not all of these neuroinflammatory molecules in SMA1 patients. Conversely, Nusinersen increases the CSF levels of proinflammatory G-CSF, IL-8, MCP-1, MIP-1α, and MIP-1β in SMA2 patients and decreases those of anti-inflammatory IL-1ra in SMA3 patients. Conclusions: These findings highlight signatures of neuroinflammation that are specifically associated with severe SMA and the neuro-immunomodulatory effects of Nusinersen therapy

    Nusinersen Induces Disease-Severity-Specific Neurometabolic Effects in Spinal Muscular Atrophy

    Get PDF
    Intrathecal delivery of Nusinersen-an antisense oligonucleotide that promotes survival motor neuron (SMN) protein induction-is an approved therapy for spinal muscular atrophy (SMA). Here, we employed nuclear magnetic resonance (NMR) spectroscopy to longitudinally characterize the unknown metabolic effects of Nusinersen in the cerebrospinal fluid (CSF) of SMA patients across disease severity. Modulation of amino acid metabolism is a common denominator of biochemical changes induced by Nusinersen, with distinct downstream metabolic effects according to disease severity. In severe SMA1 patients, Nusinersen stimulates energy-related glucose metabolism. In intermediate SMA2 patients, Nusinersen effects are also related to energy homeostasis but involve ketone body and fatty acid biosynthesis. In milder SMA3 patients, Nusinersen mainly modulates amino acid metabolism. Moreover, Nusinersen modifies the CSF metabolome of a more severe clinical group towards the profile of untreated SMA patients with milder disease. These findings reveal disease severity-specific neurometabolic signatures of Nusinersen treatment, suggesting a selective modulation of peripheral organ metabolism by this CNS-directed therapy in severe SMA patients

    Benefits of glucocorticoids in non-ambulant boys/men with Duchenne muscular dystrophy: A multicentric longitudinal study using the Performance of Upper Limb test

    Get PDF
    The aim of this study was to establish the possible effect of glucocorticoid treatment on upper limb function in a cohort of 91 non-ambulant DMD boys and adults of age between 11 and 26 years. All 91 were assessed using the Performance of Upper Limb test. Forty-eight were still on glucocorticoid after loss of ambulation, 25 stopped steroids at the time they lost ambulation and 18 were GC naive or had steroids while ambulant for less than a year. At baseline the total scores ranged between 0 and 74 (mean 41.20). The mean total scores were 47.92 in the glucocorticoid group, 36 in those who stopped at loss of ambulation and 30.5 in the naive group (p <0.001). The 12-month changes ranged between -20 and 4 (mean -4.4). The mean changes were -3.79 in the glucocorticoid group, -5.52 in those who stopped at loss of ambulation and -4.44 in the naive group. This was more obvious in the patients between 12 and 18 years and at shoulder and elbow levels. Our findings suggest that continuing glucocorticoids throughout teenage years and adulthood after loss of ambulation appears to have a beneficial effect on upper limb function. (C) 2015 The Authors. Published by Elsevier B.V
    corecore