189 research outputs found

    An Innovative Word Encoding Method For Text Classification Using Convolutional Neural Network

    Full text link
    Text classification plays a vital role today especially with the intensive use of social networking media. Recently, different architectures of convolutional neural networks have been used for text classification in which one-hot vector, and word embedding methods are commonly used. This paper presents a new language independent word encoding method for text classification. The proposed model converts raw text data to low-level feature dimension with minimal or no preprocessing steps by using a new approach called binary unique number of word "BUNOW". BUNOW allows each unique word to have an integer ID in a dictionary that is represented as a k-dimensional vector of its binary equivalent. The output vector of this encoding is fed into a convolutional neural network (CNN) model for classification. Moreover, the proposed model reduces the neural network parameters, allows faster computation with few network layers, where a word is atomic representation the document as in word level, and decrease memory consumption for character level representation. The provided CNN model is able to work with other languages or multi-lingual text without the need for any changes in the encoding method. The model outperforms the character level and very deep character level CNNs models in terms of accuracy, network parameters, and memory consumption; the results show total classification accuracy 91.99% and error 8.01% using AG's News dataset compared to the state of art methods that have total classification accuracy 91.45% and error 8.55%, in addition to the reduction in input feature vector and neural network parameters by 62% and 34%, respectively.Comment: Accepted @ 14th International Computer Engineering Conference (ICENCO2018), Faculty of Engineering , Cairo University, Egypt, Dec. 29-30, 201

    Cerebral microdialysis in clinical studies of drugs: pharmacokinetic applications.

    Get PDF
    The ability to deliver drug molecules effectively across the blood-brain barrier into the brain is important in the development of central nervous system (CNS) therapies. Cerebral microdialysis is the only existing technique for sampling molecules from the brain extracellular fluid (ECF; also termed interstitial fluid), the compartment to which the astrocytes and neurones are directly exposed. Plasma levels of drugs are often poor predictors of CNS activity. While cerebrospinal fluid (CSF) levels of drugs are often used as evidence of delivery of drug to brain, the CSF is a different compartment to the ECF. The continuous nature of microdialysis sampling of the ECF is ideal for pharmacokinetic (PK) studies, and can give valuable PK information of variations with time in drug concentrations of brain ECF versus plasma. The microdialysis technique needs careful calibration for relative recovery (extraction efficiency) of the drug if absolute quantification is required. Besides the drug, other molecules can be analysed in the microdialysates for information on downstream targets and/or energy metabolism in the brain. Cerebral microdialysis is an invasive technique, so is only useable in patients requiring neurocritical care, neurosurgery or brain biopsy. Application of results to wider patient populations, and to those with different pathologies or degrees of pathology, obviously demands caution. Nevertheless, microdialysis data can provide valuable guidelines for designing CNS therapies, and play an important role in small phase II clinical trials. In this review, we focus on the role of cerebral microdialysis in recent clinical studies of antimicrobial agents, drugs for tumour therapy, neuroprotective agents and anticonvulsants

    Principal component analysis of the cytokine and chemokine response to human traumatic brain injury.

    Get PDF
    There is a growing realisation that neuro-inflammation plays a fundamental role in the pathology of Traumatic Brain Injury (TBI). This has led to the search for biomarkers that reflect these underlying inflammatory processes using techniques such as cerebral microdialysis. The interpretation of such biomarker data has been limited by the statistical methods used. When analysing data of this sort the multiple putative interactions between mediators need to be considered as well as the timing of production and high degree of statistical co-variance in levels of these mediators. Here we present a cytokine and chemokine dataset from human brain following human traumatic brain injury and use principal component analysis and partial least squares discriminant analysis to demonstrate the pattern of production following TBI, distinct phases of the humoral inflammatory response and the differing patterns of response in brain and in peripheral blood. This technique has the added advantage of making no assumptions about the Relative Recovery (RR) of microdialysis derived parameters. Taken together these techniques can be used in complex microdialysis datasets to summarise the data succinctly and generate hypotheses for future study

    Economic design of sleeve rotor induction motor using rotor ends

    Get PDF
    In this paper, the field analysis of the sleeve rotor induction motor (IM) is carried out taking the rotor ends into consideration. Here, the field system equations are derived using the cylindrical model with applying Maxwell's field equations. It is expected that, both starting and maximum torques will increase with taking the rotor ends than that without rotor ends. A simple model is used to establish the geometry of the rotor ends current density and to investigate the air gap flux density. The magnetic flux is assumed to remain radially constant through the very small air gap length between the sleeve and stator surfaces. Variation of the field in the radial direction is ignored and the skin effect in the axial direction is considered. The axial distributions of the air gap flux density, the sleeve current density components and the force density have been determined. The motor performance is carried out taking into account the effects of the rotor ends on the starting and normal operations. The sleeve rotor resistance and leakage reactance have been obtained in terms of the cylindrical geometry of the machine. These equivalent circuit parameters have been calculated and plotted as functions of the motor speed with and without the rotor ends
    • …
    corecore