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Abstract

There is a growing realisation that neuro-inflammation plays a fundamental role in the pathology of Traumatic Brain Injury
(TBI). This has led to the search for biomarkers that reflect these underlying inflammatory processes using techniques such
as cerebral microdialysis. The interpretation of such biomarker data has been limited by the statistical methods used. When
analysing data of this sort the multiple putative interactions between mediators need to be considered as well as the timing
of production and high degree of statistical co-variance in levels of these mediators. Here we present a cytokine and
chemokine dataset from human brain following human traumatic brain injury and use principal component analysis and
partial least squares discriminant analysis to demonstrate the pattern of production following TBI, distinct phases of the
humoral inflammatory response and the differing patterns of response in brain and in peripheral blood. This technique has
the added advantage of making no assumptions about the Relative Recovery (RR) of microdialysis derived parameters.
Taken together these techniques can be used in complex microdialysis datasets to summarise the data succinctly and
generate hypotheses for future study.
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Introduction

Traumatic Brain Injury (TBI) is a multifaceted pathology

including diverse mechanisms such as excitotoxicity, free radical

formation, disrupted metabolism and brain swelling [1]. A range

of cytokines and chemokines have been implicated in these

pathophysiological consequences of TBI [2,3]. Cytokines are

paracrine and autocrine mediators of inflammation produced by

a number of central nervous system cell types, including

neurones, astrocytes and microglia and can be measured in a

range of biological fluids including blood, cerebrospinal fluid and

microdialysate [4]. Disentangling the roles and inter-relationships

between these mediators is a key goal in developing a

mechanistic understanding of neuronal loss following TBI as

well as identifying novel therapeutic targets [5]. However, there

are a number of practical difficulties in interpreting human

cytokine data due to the large number of inter-related variables,

variations in monitoring period in relation to time of injury and

missing data points [6]. Many authors have attempted to use

univariate correlations between a given mediator and a clinical

outcome to draw inferences regarding the biological action of a

cytokine, often pigeon-holing a cytokine as ‘beneficial’ or

‘damaging’ [7,8,9,10,11,12,13,14,15,16,17,18]. This approach

may be flawed for several reasons both in this context and

within the wider TBI biomarker literature. Firstly, as there is a

common trigger to cytokine production, namely TBI, the change

in concentration of these mediators will likely correlate with each

other and with the severity of injury irrespective of their ultimate

biological action. Secondly, it is clear that cytokines that are

directly antagonistic to one another at the same receptor (such as

IL1b and IL1ra) are both produced in response to TBI in

concert and may therefore correlate positively with each other

[19]. Thirdly, the actions of a given cytokine are dependent on

the time period and context in which it is produced [3,20].

There is therefore a need for multivariate statistical techniques

that incorporate the putative statistical interactions between

cytokines in order to interpret and analyse cytokine data of this

type. Multivariate regression is a ubiquitous technique within the

biological literature, however it is limited by the need for large

numbers of subjects in relation to the number of variables

measured to prevent overfitting. In addition, without interpola-

tion techniques, multivariate regression cannot compensate for

missing data points potentially requiring observations to be

discarded from the model. In contrast, multivariate projection

methods such as principal component analysis (PCA), partial
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least squares discriminant analysis (PLS-DA) and their various

derivatives provide a powerful method for exploring complex

datasets with multiple variables and missing data points with

relatively small numbers of observations [21,22,23].

We have previously described the measurement of 42 cytokines

in brain extracellular fluid in 12 patients with severe TBI for 5

days at 6 hourly time points as well as in concurrent blood samples

[6]. We demonstrated a stereotyped sequence of cytokine

production within the brain following injury as well as significantly

higher concentrations of some cytokines in brain compared with

blood. We have investigated this dataset using multivariate

projection methods in order to explore the underlying structure

within the cerebral cytokine response. Firstly, we have sought to

identify the clusters of cytokines that discriminate between patients

as a focus for future studies into neuroinflammation following TBI.

Secondly, we have explored the change in this pattern over time.

Thirdly, we have sought to identify the differences between the

innate inflammatory response within brain extracellular space

compared with that in peripheral blood following trauma.

Materials and Methods

In total, twelve patients with diffuse severe traumatic brain

injury defined as a post-resuscitation Glasgow Coma Score#8, a

consistent mechanism of injury and consistent neuroimaging were

monitored with cerebral microdialysis, arterial and jugular venous

plasma sampling for a total of five days.

Ethics Statement
The study protocol was reviewed and approved by the

Cambridgeshire Local Research Ethics Committee (2). Written

informed assent was taken from the next of kin of all patients in

line with our locally agreed protocols with Cambridgeshire Local

Research Ethics Committee (2).

Microdialysis
CMA71(CMA Microdialysis AB, Solna, Sweden) high molec-

ular weight cut-off microdialysis catheters (nominal cut-off

100 kDa) were perfused with 3.5% Human Albumin Solution

made up in CMA CNS perfusion fluid) (Pharmacy Manufacturing

Unit, Ipswich Hospital NHS Trust, UK), at a rate of 0.3 ml/

minute, using CMA 106 (CMA Microdialysis AB, Solna, Sweden)

microinfusion pumps. Samples were pooled in six hour time

epochs before analysis. All catheters were placed through cranial

access devices (Technicam, Newton Abbot, UK), into areas of

brain that were consistent with diffuse injury on neuroimaging. At

timepoints during which microdialysis was stopped for clinical

indications (e.g. during MR imaging), these timepoints were noted

as ‘missing’.

Plasma Sampling
Whole blood samples were taken from each patient twice daily

into EDTA vials from an arterial line in the radial artery. Samples

were centrifuged at 5000 rpm at 4uC for 15 minutes and the

resulting supernatant aliquoted and stored at 280uC until assayed.

The timing of plasma samples was also related to the time of injury

as for microdialysate.

Cytokine Analysis
The samples were analysed in duplicate using the MilliplexTM

Multi-Analyte Profiling Human Cytokine/Chemokine 42 analyte

premixed kit (Millipore Corp, Missouri, USA) on the Luminex 200

system (Luminex Corporation, Austin, TX, USA) running

STarstation software(Applied Cytometry Systems, Sheffield,

UK). Table 1 lists the cytokines and chemokines assayed. Cytokine

standards were run on each plate and used to determine an eight-

point five-parameter logistic standard curve. Plasma and mico-

dialysate samples were assayed on separate plates with appropriate

standards and background wells.

Table 1. Cytokines Analysed.

Cytokine Abbreviation

Epidermal Growth Factor EGF

Eotaxin Eotaxin

Basic Fibroblast Growth Factor FGF2

Fms-related tyrosine kinase 3 ligand Flt3 lig

Fractalkine Frac

Granulocyte Colony Stimulating Factor G-CSF

Granulocyte-Monocyte Colony Stimulating Factor GM-CSF

GRO GRO

Interferon a-2 IFNa2

Interferon c IFNg

Interleukin-1 a IL1a

Interleukin-1 b IL1b

Interleukin-1 receptor antagonist IL1ra

Interleukin-2 IL2

Interleukin-3 IL3

Interleukin-4 IL4

Interleukin-5 IL5

Interleukin-6 IL6

Interleukin-7 IL7

Interleukin-8 IL8

Interleukin-9 IL9

Interleukin-10 IL10

Interleukin 12 subunit b IL12p40

Interleukin-12 IL12p70

Interleukin-13 IL13

Interleukin-15 IL15

Interleukin-17 IL17

Chemokine (C-X-C motif) ligand 10 IP10

Monocyte Chemotactic Protein 1 MCP1

Monocyte Chemotactic Protein3 MCP3

Macrophage Derived Chemoattractant MDC

Macrophage Inflammatory Protein-1a MIP1a

Macrophage Inflammatory Protein-1b MIP1b

Platelet Derived Growth Factor AA PDGF-AA

Platelet Derived Growth Factor AB/BB PDGF-AAAB

RANTES RANTES

Soluble CD40 Ligand sCD40L

Soluble Interleuking-2 Receptor sIL2R

Transforming Growth Factor a TGFa

Tumour Necrosis Factor a TNF

Tumour Necrosis Factor b TNFb

Vascular Endothelial Growth Factor VEGF

doi:10.1371/journal.pone.0039677.t001

Cerebral Cytokine Principal Component Analysis
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Multivariate Statistical Analysis
Statistical analysis was performed using multivariate techniques,

specifically principal component analysis (PCA), followed by

partial least squares discriminant analysis (PLS – DA). SIMCA –

P+ version 12 (Umetrics, Umea, Sweden) was used to identify

principal components which accounted for the majority of the

variation within the dataset. PCA is an unsupervised method and a

data reduction technique that allows the major sources of variation

in a multi-dimensional dataset to be analysed without introducing

inherent bias. PLS – DA is a regression extension of the principal

component analysis that uses class information to maximize the

separation between various groups of observations. To estimate

the number of PCA and PLS-DA components, cross-validation

was used [21]. Data for each cytokine was mean centred and

variance scaled to unit variance. SIMCA-P+ uses NIPALS (non-

linear iterative partial least squares) algorithm to calculate the first

few principal components and inherently compensates for missing

data values. This has been suggested as a more accurate, though

computationally more complex method for deriving eigenvalues

[24]. Cross validation was carried out by dividing the data into

seven parts and comparing models with each of the seven parts left

in or out in turn. Predicted Residual Sum of Squares are

calculated for the whole dataset and scaled to provide the Q2

statistic.

Cerebral cytokine data was pooled into 48 hour and 72 hour

bins, following the time of injury, in order to ease the

interpretation of the numerous time points and minimise missing

data values. The 48 hour bins are 1(0–48 hours), 2 (48–96 hours),

3 (96–144 hours), 4 (144–192 hours) and 72 hour bins are 1 (0–72

hours), 2 (72–144 hours. For transparency we have included the

PCA and temporally defined PLS-DA analyses for both 48 hour

and 72 hour time bins. The monitoring period for each patient in

relation to injury varies, therefore data is not available for every

patient for every time point.

The analysis was performed in two stages. Firstly a PCA analysis

was performed to examine any intrinsic variation in the cytokine

data set and whether any clustering was presented at this stage.

Removal of outliers made no difference in the model and outliers

are included in all models presented. Secondly, PLS – DA was

performed using the cytokine data, to demonstrate the separation

of the time points and also identify the cytokines responsible for

any of the clustering/separation present.

Cerebral cytokine data was also compared to concurrent plasma

samples using the both PCA and PLS-DA methodology. In this

case, we have not sought to make a comparison across time, so

individual observations (‘microdialysis’ vs ‘plasma’) have been

entered into the model directly. In this case, our aim was to define

a subset of neurotropic cytokines.

Results

Six models were derived in total: the number of principal

components derived, and the variation explained by these

components for each of the models is summarised in Table 2.

R2 describes the goodness of fit fraction of the sum of squares of all

the variables explained by a principal component and Q2

describes the goodness of prediction of the fraction of the total

variation of the variables that can be predicted by a principal

component using cross-validation methods.

Each of the figures 1, 2, 3, 4, 5, 6 relates to one of the six models

in Table 2 and is made up of two parts which are closely related.

Part ‘a’ of each figure shows the scores plot obtained using

SIMCA-P+. The scores plot shows the scores for each observation

on Principal Component (PC)1 and PC2. Strictly speaking the

SIMCA algorithm provides an estimate of the PC, which is more

correctly referred to on the figures as t [1]/t [2] on the scores plots

and p [1]/p [2] on the loading plots. PC is used within the text for

ease of reference although we accept that they are not identical to

principal components. The ellipse on the plot (Hotelling ellipse) is

the 95% confidence interval for the model, hence plots of this type

are sometimes referred to as Hotelling plots. Part ‘b’ in each of the

figures shows the corresponding loading plot. The loading plot

illustrates the relative contribution of each of the cytokines

(referred to as the ‘loading’) to the two principal components. It

is a linear contribution of each of these loadings that determines

the score for each observation in the scores plot.

The scores plot is used to determine if there is clustering of

observations, which would suggest a common underlying multi-

variate signal (or in this case pattern of cytokines) exists for that

particular cluster of observations. Observations on the scores plot

that lie within the Hotelling ellipse are within the 95% confidence

interval for the model and are therefore well modelled in statistical

terms. In order to interpret the cytokines responsible for a given

multivariate signal reference is made to the loading plot. Cytokines

with a larger loading on a PC in a particular direction contribute

Table 2. Number of Principal Components Derived and Proportion of Variation Explained.

Model Principal Components Derived Variation explained (R2X)
Variation explained by first Two Principal
Components (Q2X) Figure

48 Hour Pooled Cerebral Microdialysis Data (Figures 1 and 2)

PCA 4 63.7% 44.5% 1

PLS-DA 2 34.2% 34.2% 2

72 Hour Pooled Cerebral Microdialysis Data (Figures 3 and 4)

PCA 3 55.6% 45.6% 3

PLS-DA 2 31.3% 31.3% 4

Plasma vs Cerebral Microdialysis Data (Figures 5 and 6)

PCA 5 54.2% 33.4% 5

PLS-DA 3 37.4% 90.6% 6

This table provides summary data for each of the models generated in SIMCA-P+. The algorithm used continues to derive principal components until cross-validation
shows that further principal components are only modelling noise within the dataset. The first 2 principal components are used in all the figures and subsequent
analysis. PCA; Principal Component Analysis. PLS-DA; Partial Least Squares Discriminant Analysis.
doi:10.1371/journal.pone.0039677.t002

Cerebral Cytokine Principal Component Analysis
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Figure 1. 48 Hour Time Pools Principal Component Analysis. The figure shows cerebral microdialysis derived cytokine data from 12 patients
(A–L) pooled into 48 hour time epochs(1–4). Principal component analysis has been used to identify the first 2 principal components which explain

Cerebral Cytokine Principal Component Analysis
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more heavily to the multivariate signal in that direction and

therefore make a greater contribution to observations with high

scores on that PC. Moreover, cytokines which cluster on the

loading plot have a high degree of co-variance when the sources of

variation in the model are considered.

Principal Component Analysis and PLS – DA of Pooled
Microdialysate Data

The 48 hour microdialysate pooled data for each patient is

plotted individually in figure 1. The model generated four

principle components that explain 63.7% of the variation within

the dataset. The first two principal components are presented and

together explain 44.5% of the variation within the dataset. All data

points, other than E1 fall within the 0.95 Hotelling ellipse. The

corresponding loading plot (Figure 1b) demonstrates distinct

clusters of cytokines. PLS-DA of the same data using the time

point as the supervising variable (Figure 2a) demonstrates that

there is a consistent shift across time in the pattern of cytokine

expression following TBI. The corresponding PLS-DA plot

(Figure 2b) illustrates the cytokine loadings responsible for this

shift. The same analysis was repeated on 72 hour time bins and is

presented in figures 3 and 4. The same features are apparent

within these models despite the difference in time epoch used.

Namely, the observations fall within the Hotelling ellipse, distinct

clusters of cytokines are apparent in the PCA loading plot

(Figure 3b), PLS-DA demonstrates a clear separation of observa-

tions (Figure 4a) and the same cytokines are responsible for this

multivariate signal on the PLS-DA loading plot (Figure 4b) as in

the 48 hour time epoch (Figure 2b).

Comparison between Cerebral and Plasma Cytokine
Profiles

We have also performed a PCA on the data set of paired blood

and MD data to determine whether a multivariate signal was

present. Figure 5 shows a PCA of this data demonstrating clear

separation in cytokine profiles even within the unsupervised

model. Figure 6 shows the corresponding PLS-DA data reinforc-

ing the separation in cytokine profile between these two biological

compartments. The cytokines appearing to the left of the PLS-DA

scores plot (Figure 6b) are more negatively loaded on PC1 and

seem to be responsible for the separation in patterns of response

between brain extracellular space and plasma.

Discussion

Principal Component Analysis of Microdialysate Data
PCA is an unsupervised dimension reduction technique which

generates latent variables designated prinicipal components. The first

PC is a linear combination of each of the original variables which

incorporates the greatest sources of variation within a dataset. The

second and subsequent PCs are further latent variables that

explain the greatest sources of variation that are left over beyond

the first PC and lie orthogonal to it. In our initial analysis we have

incorporated data from all 12 patients for a range of time-points

pooled into 48 and 72 hour bins. Exploring the sources of

variation within this dataset using PCA gives an indication of the

cytokines responsible for variation between patients and over time,

without making any assumptions about which patient or which

time-point each observation has come from. Each observation is

therefore made up of 42 individual cytokine concentrations from a

given patient (A–L) at a given time-point (1–4 in the 48 hour pools

and 1–2 in the 72 hour pools). Comparing the models generated

using 48 hour and 72 hour time pools demonstrates clustering of

the same groups of cytokines. This suggests that the models are

robust and do not simply reflect idiosyncrasies of the time pools

presented. The polarity of some of the PCs are inverted when

figures 1 and 2 are compared with figures 3 and 4, however this

does not change the interpretation of the plots and is a reflection of

the algorithm used to generate the PC. Table 2 lists the amount of

variation explained by each of the models demonstrating that for

both the 48 hour and 72 hour pools ,45% of the total variation in

the dataset is explained by just the first two PC. Given the

recognised heterogeneity in human TBI [25], this degree of

dimension reduction whilst explaining a large degree of variation

adds credence to the robustness of the models.

The loading plots (Figure 1b, Figure 3b) plot the relative

contribution of each cytokine to the respective PC illustrated in in

the scores plots. The loading plots allow us to explore the largest

sources of variation within the dataset and identify clusters of

cytokines that closely co-vary. The current literature on TBI and

cytokines focuses on a relatively small group of mediators. The two

cytokines most commonly implicated in a pro-inflammatory role are

IL1b and TNF. These cytokines share intracellular transduction

mechanisms [26] and have synergistic actions in cell culture models

[27,28]_ENREF_35. They appear in the same quadrant in both

PCA loading plots (top right figure 1b, bottom right figure 3b)

suggesting concomitant production. Conversely, IL1ra, an endog-

enous competitive antagonist to IL1b appears in the opposing

quadrant of the loading plots (bottom right figure 1b, top right

figure 3b). Interestingly, IL1a, another agonist at the IL-1 receptor

appears immediately adjacent to IL1ra and therefore closely co-

varies with IL1ra. This relationship has not previously been

described in the literature. It is not possible to determine what the

functional consequences of this relationship are simply based on the

PCA model, however it may be that as IL1a is produced

concurrently with IL1ra it may not act as effectively as an agonist

at the IL1 receptor as IL1b. There is pre-clinical evidence

demonstrating differential effects of IL1a and IL1b [29] as well as

a more prominent role for IL1b in inducing neurodegeneration than

for IL1a [30]. This potentially adds to the considerable complexity

in the regulation of the IL1 receptor pathway [31] and may result in

differences in the potencies of IL1a and IL1b action in vivo.

Furthermore, it clearly illustrates how biological mediators with

opposing functions can closely co-vary. There is no way to

definitively infer what a PC represents biologically, however, on

the basis of the location of TNF, IL1b and IL1ra and the prior

evidence for the role of these cytokines following TBI, we would

suggest that PC2 represents some aspect of the pro-inflammatory

consequences of IL1b/TNF action in contrast to the cytokines

loading negatively on this axis.

Several chemokines were recovered using microdialysis and the

loading plot reveals that many of these are produced concom-

itantly. For example, MIP1a (CCL-3) and MIP1b (CCL-4) appear

adjacent to each other and can both signal through the CCR5

receptor [32]. The functional consequences of this relationship are

not known and have never been investigated directly in the context

of neuro-inflammation. In this way the PCA model can generate

63.7% of the variation in the dataset. Part A is a scores plot which shows the scores on each principal component for each of the observations. Part B
is a loading plot which shows the cytokines which load on the respective principal components. Functionally related cytokines, such as IL1b and TNF,
cluster within the same quadrant of the plot suggesting that they co-vary.
doi:10.1371/journal.pone.0039677.g001
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hypotheses relating to specific mediators that are produced in

concert in vivo.

The relationship between humoral and cellular inflammation

has been explored extensively in the peripheral immune system.

There is increasing interest in the role of microglia following TBI

and their ability to carry out a functional switch between a pro-

inflammatory and a reparative role. The nomenclature used by

different authors varies, however IFNc is thought to promote a

pro-inflammatory phenotype (classical-activation/Th1 type re-

sponse/M1 subtype) while IL-4 promotes an anti-inflammatory

response (regulatory/Th2 type response/M2 subtype). IL4 and

IFNc, appear immediately adjacent to each other on the far right

of the loading plot. Furthermore, both IL10 and IL12 have been

implicated in phenotypic plasticity of macrophages and they also

appear within in the same region of the loading plot [33,34].

Partial Least Squares Discriminant Analysis Using Pooled
Timepoints

As well as looking for sources of variation in the dataset as a

whole, multivariate projection techniques can also look for sources

of variation between pre-specified observations. These so-called

supervised techniques include PLS-DA. In this case, we have

chosen to define ‘time following injury’ as the supervising variable.

This allows an identification of the underlying patterns of cytokine

that are responsible for changes in time in this patient group. The

degree of variation explained by the models necessarily drops to

around 1/3 of the total variation (Table 2) as the PCs now

maximise variation specifically within in the time domain.

Figure 2a demonstrates that there is separation of the time

points on the scores plot with observations at the first time point

clustering towards the top left quadrant and observations from the

third time point clustering towards the lower right quadrant.

Figure 4a shows even clearer separation of the two time points,

although the polarity of the PC is inverted. This pattern is not

replicated for every patient (e.g. patient K moves from top right

quadrant towards the bottom left quadrant in figure 3a and from

top right quadrant to bottom left quadrant in figure 4a) however

the observations fall within the Hotelling 95% significance ellipse,

again suggesting that the PLS-DA model is an accurate

representation of the underlying dataset. It is not clear what is

responsible for this difference but no inference can be made solely

on the results from a single patient.

Inspection of the loading plots for the PLS-DA (figures 2b and

4b) reveal the cytokines that are responsible for the changing

pattern of response over time. As the loading of a cytokine on a

given PC is linearly related to the score that observation receives in

the scores plot, we can infer that the cluster of cytokines in the

quadrant of the loading plot adjacent to the first time point (e.g.

IL6, GRO, G-CSF, IP10) are produced earlier following injury in

relation to cytokines appearing in the opposite quadrant (e.g IL10,

MCP3, IL17). These models therefore suggest that there are

distinct temporal phases to the innate inflammatory response to

brain trauma. An important caveat to the interpretation of the

cytokines responsible for ‘early’ vs ‘late’ patterns, is that

microdialysis monitoring in patients is not available immediately

at the time of injury. In practice, a minimum of 24 hours elapses

before a patient is resuscitated, transferred to neurocritical care

and monitoring is instituted. For this reason, cytokines that are

known to be produced and released within the first 24 hours

following injury are likely to be under-represented within this

model as their levels are already likely to have peaked and may

have returned to baseline levels at the time of monitoring. We

would therefore expect that cytokines that peak at 24–48 or 24–72

hours are most likely to load highly for the early time points. From

an analysis of the time at which each cytokine has its highest (peak)

value following TBI [6], this would appear to be the case for IL6,

G-CSF and IP10. Similarly IL10 appears to have its highest values

at day 5–6 and appears in the later time points. Both, IL10 and

IL17 have both been implicated in the interaction between cells of

the macrophage lineage and regulatory T-cell responses [33,35].

This temporal shift may therefore represent a shift from innate to

adaptive immunity in the cerebral cytokine profile following TBI.

Comparison between Microdialysate and Plasma
Patterns of Cytokine Production

We have also explored the relationship between the systemic

inflammatory response, as gauged within plasma, and the cerebral

inflammatory response to trauma. In order to make this

comparison we have used temporally paired serum and micro-

dialysate samples assayed using the same technique for the same

substances. Figure 5a shows the hotelling plot and loading plot for

the entire dataset. It is immediately apparent that even in an

unsupervised model, there is a clear separation between observa-

tions made in the two compartments. We have also carried out a

PLS-DA on this dataset using the biological source of the sample

(microdialysate vs plasma) as the supervising variable (Figure 6).

The close concordance between the loading plots in the PCA and

PLS-DA models suggests a robust differentiation between the two

compartments.

The individual mediators involved in inflammation are ubiqui-

tous and implicated in several contexts and pathologies. Identify-

ing tissue specific variations provides an insight into the subtleties

of the inflammatory response in TBI. Almost all the microdialysate

observations load negatively on PC1 in contrast to the plasma

samples (Figure 6). The cytokines loading most heavily in this

direction are the chemokines MCP-1, MCP-3, MIP1a, MIP1b,

IP-10 and the cytokines IL-6 and IL-8. Several recent studies have

highlighted the importance of MCP-1 (CCL-2) in the pathogenesis

of TBI in animal models [36,37]. It has also been shown to

modulate cytokine production in a mouse culture model [38]. This

comparative neural tropism of this group of chemokines suggests

that, in response to TBI, they are playing a more pronounced role

centrally rather than systemically. This is not to say that the other

mediators are unimportant in TBI, however the patterns of

expression are more equally distributed between the central and

peripheral compartments. The same caveats regarding monitoring

period also apply in this context i.e. cytokines and chemokines that

may show differences between the two biological compartments in

the first 24 hours following injury will not be identified in this

analysis.

Figure 2. 48 Hour Time Pools Partial Least Squares Discriminant Analysis. The figure shows the same cerebral microdialysis derived
cytokine data as in figure 1, from 12 patients (A–L) pooled into 48 hour time epochs (Red 0–48 hours, Green 48–96 hours, Blue 96–144 hours, Yellow
144–192 hours). Partial Least Squares Discriminant Analysis is a regression extension of Principal Component Analysis in which the model identifies
the greatest sources of variation between pre-specified groups of observations. In this case the supervising variable is time. There is a clear shift in the
pattern of observations in the scores plot (part A) over time from the 0–48 hour epoch (red) to the 48–96 hour time epoch (green) to the later time
points (blue and yellow). The loading plot (part B) illustrates the cytokines that are responsible for the pattern apparent in part a.
doi:10.1371/journal.pone.0039677.g002
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Figure 3. 72 Hour Time Pools Principal Component Analysis. The figure shows cerebral microdialysis derived cytokine data from 12 patients
(A–L) pooled into 72 hour time epochs(1,2). Principal component analysis has been used to identify the first 2 principal components which explain
55.6% of the variation in the dataset. Part A is a scores plot which shows the scores on each principal component for each of the observations. Part B
is a loading plot which shows the cytokines which load on the respective principal components. In a similar pattern to figure 1, IL1b and TNF still
cluster within the same quadrant of the plot.
doi:10.1371/journal.pone.0039677.g003
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Figure 4. 72 Hour Time Pools Partial Least Squares Discriminant Analysis. The figure shows the same cerebral microdialysis derived
cytokine data as in figure 3, from 12 patients (A–L) pooled into 72 hour time epochs (Red 0–72 hours, Green 72–144 hours). Partial Least Squares
Discriminant Analysis is a regression extension of Principal Component Analysis in which the model identifies the greatest sources of variation
between pre-specified groups of observations. In this case the supervising variable is time. There is a clear shift in the pattern of observations in the
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Advantages of Multivariate Projection Methods
There is a growing recognition that humoral mediators of

innate inflammation (i.e. cytokines and chemokines) play a

mechanistic role in the pathophysiological processes in a range

of neurological disorders including HIV encephalitis [39],

ischaemic stroke [40] as well as in TBI [3]. Microdialysis is

unique in its ability to sample the extracellular fraction of soluble

mediators, providing a direct and temporally distinct proxy for the

biology of the brain extracellular space [41]. However, biomarker

studies of this type are intrinsically limited in their interpretation

by the fact that each of the measured variables is likely to show

multi-collinearity with other related variables. Studies which

sample only a few or even single cytokines within a biological

compartment and attempt a univariate correlation with clinical

parameters or with other biomarkers may be confounded by a

range of other factors such as severity of injury or other

unmeasured biomarkers [5,42]. This can lead to erroneous

conclusions about the role of cytokines as beneficial or harmful

based on these simplistic correlations. As our understanding of

innate inflammation following TBI has developed, it has become

apparent that a given cytokine may play a dual role, damaging or

reparative, depending on the context in which it is expressed either

in terms of timescale or the co-existent cytokine milieu

[3,5,43,44,45]. The complexity and subtleties of these interactions

are difficult to model mathematically, however, without taking

these putative interactions into account an understanding of

cytokine biology will continue to elude us. Multivariate regression

has been used extensively in the TBI literature to relate a range of

variables to clinical outcome following TBI including clinical

parameters (such as age, GCS, pupillary function) [46,47,48],

microdialysate parameters (L/P ratio) [49] and serum parameters

(Hb, PT) [50]. This statistical method requires large numbers of

observations as the number of variables increases and often take

measures at single timepoints (e.g. admission serum parameters)

[50] or take a mean of the measured variable (e.g. L/P ratio over

monitoring period) [49] to reduce the number of variables

incorporated to a manageable number [51]. This has the potential

to discard potentially useful temporal information. Cytokine data,

in particular, is characterised by marked rises in concentration that

are short lived. If the concentration of a cytokine is averaged over

the entire monitoring period (equivalent to the area under the

time-concentration curve if sampling time points are evenly

spaced), the mean may be heavily influenced by the length of the

monitoring period at which baseline levels are measured [5].

In order to address some of these issues we have utilised well

characterised multivariate projection techniques, one of a range of

chemometric methods [52], to explore the sources of variation

within a complex human cytokine dataset. The greatest advantage

of the approach presented here is that no prior assumptions are

made as to which cytokines or mediators are of ‘importance’. The

option to carry out multiple t-tests comparing a subset cytokines

which are already well characterised, as in several of the studies

referenced above, incorporates inherent bias into any analysis and

perpetuates this bias in the literature as a whole. While it is

impossible to draw any direct inference with regards to the

biological function of a given mediator based on the analyses

presented here, this does not detract from the ability to generate

hypotheses and identify previously unrecognised relationships.

The same statistical methodology may have additional utility in

the analysis of data from alternative analytical techniques in TBI

such as proteomics [53].

Limitations
Microdialysis is intrinsically a focal monitor and the question

arises as to whether the volume of brain sampled by the catheter is

truly representative of the brain as a whole, particularly in view of

the heterogeneity of TBI such that the volume sampled may be

more or less injured compared with other brain areas. There is

some evidence that the inflammatory response is distributed within

both hemispheres, even in focal injuries [54], and patients within

this study were prospectively selected on the basis of diffuse brain

injuries. Another issue that has drawn attention within the

microdialysis literature is that of relative recovery (RR), i.e. the

proportion of a substance within the extracellular space that

crosses the microdialysis membrane and can be recovered in the

microdialysis fluid [55]. We have previously demonstrated that

RR varies between cytokines depending on their physico-chemical

properties such as pI and molecular weight [56]. For this reason

the relative concentrations of mediators assayed within the

microdialysis fluid may not reflect the absolute concentrations

within the brain extracellular space. However, the multivariate

projection methods employed compensate for both differences in

RR and for variations in the underlying degree of injury sampled

by the catheter, by normalising the data. In this way the model

identifies patterns of response between mediators unrelated to

the absolute concentration of any given mediator in any given

catheter. This is one of the key advantages of these techniques in

analysing microdialysis data. This normalisation also allows for a

direct comparison in the patterns of expression between the

responses in plasma and brain extracellular space irrespective of

absolute values. While an estimate of RR is not required to carry

out these analyses, comparisons between patients still require the

RR to be consistent between catheters and patients. The factors

affecting RR have been reviewed extensively in the literature

[55,56]. Mediators that have a high random variation in RR are

less likely to be contribute to variation in supervised models, such

as the PLS-DA, and will therefore have a diminished loading on a

given PC.

A further criticism of microdialysis for assessing the inflamma-

tory response to trauma is the suggestion that insertion of the

catheter, in itself, triggers an injurious response that is superim-

posed on the response to the initial trauma. The existing cerebral

microdialysis literature provides evidence against this [5]. Firstly,

cytokines that are shown in animal models to be produced early

(e.g. IL1b, TNF) following injury are not sampled in patients in

which monitoring commences later following injury [6]. If the

cytokine response was in response to catheter insertion, there

would be a consistent temporal response irrespective of the time of

catheter insertion to time of injury. Secondly, there are pathology

specific differences in production of cytokines when conditions

such as subarachnoid haemorrhage [57] and tumour [58] patients

are compared with those following TBI [6]. Thirdly, there appears

to be a stereotyped sequence of cytokine production when the time

lag between the time of injury and the ‘peak’ cytokine

concentration is observed [6]. This is reinforced in this study in

Figures 2 and 4. The pattern of cytokine response is apparent

despite the variation between patients in the time frame over

which monitoring occurs. The clustering of time points occurs

when the time following injury is used rather than time from

scores plot (part A) over time from the early time points (red) to the later time points (green). The loading plot (part B) illustrates the cytokines that
are responsible for the pattern apparent in part a.
doi:10.1371/journal.pone.0039677.g004
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Figure 5. Paired Microdialysis and Plasma Samples Principal Component Analysis. The figure shows paired microdialysate and plasma
derived cytokine data from 12 patients. Principal component analysis has been used to identify the first 2 principal components which explain 33.4%
of the variation within the dataset. Part A is a scores plot which shows the scores for each observation on each of the principal components and even
in this unsupervised model a clear separation between microdialysis and plasma derived cytokines is apparent. Part B is a loading plot which shows
the cytokines responsible for the differences between the two biological compartments.
doi:10.1371/journal.pone.0039677.g005
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Figure 6. Paired Microdialysis and Plasma Samples Partial Least Squares Discriminant Analysis. This figure shows paired microdialysate
and plasma derived cytokine data from 12 patients as in figure 5. In this instance the source of the sample (microdialysate vs plasma) has been used
as a supervising variable within a partial least squares discriminant analysis to identify two principal components that maximise the differentiation
between the two biological compartments. Part A is a scores plot which shows the scores on each principal component for each observation. As with
figure 5, there is a clear separation between the two biological compartments. Part B is a loading plot which demonstrates which cytokines are
responsible for the difference apparent in part a. The cytokines on the left side of the figure show a comparative neural tropism when the two
biological compartments are compared.
doi:10.1371/journal.pone.0039677.g006
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monitoring. It can be seen in this figure that some patients did not

have any samples in the first 48 hours, however their pattern of

cytokine production remains consistent with patients that did have

early monitoring. It should be pointed out that the issue of ‘trauma

artefact’ is a contentious one in the microdialysis literature [59]

and some authors have suggested discarding the initial samples

(e.g. the first 24 hours [60]) following catheter insertion despite the

points made above.

In the analysis of cerebral cytokines we have chosen to pool our

data into 48 and 72 hour blocks. There is a balance to be struck

between smoothing out random variations at a given time-point

and maintaining an appropriate degree of temporal resolution.

Taking a mean over a period of time also helps to minimise

missing data points and adds a degree of clarity to the scores plots

in figures 1, 2, 3, 4. We accept that this is entirely subjective and is

in the authors’ opinion the time frame which provides the clearest

representation of the data.

All the models presented are derived from the same cohort of 12

patients. There is a risk that the models presented are an

idiosyncrasy of the particular dataset used to generate them. In

statistical terms this is referred to as ‘over-fitting’. Cross-validation

is used to provide an estimate of the predictive ability of the model

however ultimately the most stringent test would be to collect data

from a further cohort of patients and plot them on the same PCs to

provide an empirical validation.

One issue that we have not been able to address is the reasons

for any variation in cytokine pattern seen between patients. It

would be tempting to pick out other clinical factors such as GCS

or an outcome measure such as Glasgow Outcome Score (GOS)

and attempt a PLS-DA. However, in a small cohort of patients

such as this, we do not feel this would be scientifically justifiable.

These analyses will require larger patient numbers in order to

utilise multivariate techniques to analyse clinical parameters such

as these. Ultimately, the most useful application of PLS-DA may

be in interventional studies in which patient populations that are

subjected to differing treatment paradigms can be compared in

terms of their biological response. This may provide a more

sensitive chemical surrogate for treatment efficacy than conven-

tional outcome measures such as GOS.

Microdialysis has been evaluated extensively as a monitor for

cerebral metabolism following TBI [49,61] however our under-

standing of the biology of cytokines and chemokines in this context

is not at a stage where we can promote its use as a clinical tool.

Furthermore, the time and cost of recovering these samples,

laboratory analysis and statistical testing does not lend itself to ‘on-

line’ clinical decision making.

Conclusion
In this study we have utilised multivariate projection techniques

to reveal how inflammatory mediators demonstrate a distinct

pattern of response to TBI in humans. Firstly, we have shown that

several mediators show close co-variance (e.g. IL1a and IL1ra)

indicating that they are produced in concert as a result of injury.

Secondly, we have identified cytokines and chemokines that are

produced at defined time points (e.g. IL6 at 24–48 hours, IL-10 at

96–144 hours) and discriminate between different temporal phases

of the inflammatory response. Lastly, we have demonstrated that

there are tissue specific variations (brain vs blood) in the patterns of

mediators that are produced as a result of TBI.

In an observational study such as this no inference can be made

as to the specific functions attributable to a given cluster of

mediators, however by empirically determining the patterns of

response the interactions of specific mediators can be explored

further in animal and cell culture models. In particular, these

techniques compensate for the inherent difficulties related to

analysing multiple closely related mediators related to multi-

collinearity, missing data points, mediators produced at different

absolute concentration ranges and data from small numbers of

patients. We envisage that this method can be extended into

randomised studies in which cytokine data can be compared

between patients receiving specific interventions.
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