68 research outputs found

    Directive emission of red conjugated polymer embedded within zero index metamaterials

    Get PDF
    Abstract: We numerically demonstrate an impedance-matched multilayer stacked fishnet metamaterial that has zero index with flat high transmittance from 600nm to 620nm. The effective refractive index

    Plasmonic nanogaps for broadband and large spontaneous emission rate enhancement

    Get PDF
    We present the optical properties of a plasmonic nanogap formed between a silver metallic nanoparticle and an extended silver film that shows a strong enhancement in the spontaneous emission rate over the whole visible range. In particular, we use three-dimensional finite difference time domain calculations to study the spontaneous emission rate and the quantum efficiency of an emitting material placed within the gap region as a function of the geometrical parameters of the plasmonic nanogap. Our calculations reveal that the enhancements in the total decay rate can be divided into two regions as a function of wavelength; region I spans the wavelength range from 350 nm to 500 nm and peaks at approximately at 400 nm. Region II covers the spectral range between 500 nm and 1000 nm. The enhancements in total decay rate in region I are mainly dominated by Ohmic losses by the metal, while the enhancements in total decay rate in region II are mainly dominated by radiative decay rate enhancements. Furthermore, our calculations show over 100 times enhancement in the spontaneous emission rate in region II. We combine this with quantum efficiency enhancements of almost 30 times from materials with low intrinsic quantum efficiencies and only a small reduction in efficiency from those with high intrinsic quantum efficiencies. All results appear easily achievable using realistic geometrical parameters and simple synthesis techniques. These results are attributed to the strong field confinements in the nanogap region. The structures are of high interest for both the fundamental understanding of light mater interactions under extreme electromagnetic field confinements and also potential applications in quantum optics and Raman spectroscopy

    An optical nanocavity incorporating a fluorescent organic dye having a high quality factor

    Get PDF
    We have fabricated an L3 optical nanocavity operating at visible wavelengths that is coated with a thin-film of a fluorescent molecular-dye. The cavity was directly fabricated into a pre-etched, free-standing silicon-nitride (SIN) membrane and had a quality factor of Q = 2650. This relatively high Q-factor approaches the theoretical limit that can be expected from an L3 nanocavity using silicon nitride as a dielectric material and is achieved as a result of the solvent-free cavity-fabrication protocol that we have developed. We show that the fluorescence from a red-emitting fluorescent dye coated onto the cavity surface undergoes strong emission intensity enhancement at a series of discrete wavelengths corresponding to the cavity modes. Three dimensional finite difference time domain (FDTD) calculations are used to predict the mode structure of the cavities with excellent agreement demonstrated between theory and experiment

    Optical nanolithography using a scanning near-field probe with an integrated light source

    Get PDF
    An ultracompact near-field optical probe is described that is based on a single, integrated assembly consisting of a gallium nitride (GaN) light-emitting diode (LED), a microlens, and a cantilever assembly containing a hollow pyramidal probe with a subwavelength aperture at its apex. The LED emits ultraviolet light and may be used as a light source for near-field photolithographic exposure. Using this simple device compatible with many commercial atomic force microscope systems, it is possible to form nanostructures in photoresist with a resolution of 35 nm, corresponding to λ/10. © 2008 American Institute of Physics

    Long-Range and High-Efficiency Plasmon-Assisted Förster Resonance Energy Transfer

    Get PDF
    The development of a long-range and efficient Förster resonance energy transfer (FRET) process is essential for its application in key enabling optoelectronic and sensing technologies. Via controlling the delocalization of the donor’s electric field and Purcell enhancements, we experimentally demonstrate long-range and high-efficiency Förster resonance energy transfer using a plasmonic nanogap formed between a silver nanoparticle and an extended silver film. Our measurements show that the FRET range can be extended to over 200 nm while keeping the FRET efficiency over 0.38, achieving an efficiency enhancement factor of ∼108 with respect to a homogeneous environment. Reducing Purcell enhancements by removing the extended silver film increases the FRET efficiency to 0.55, at the expense of the FRET rate. We support our experimental findings with numerical calculations based on three-dimensional finite difference time-domain calculations and treat the donor and acceptor as classical dipoles. Our enhanced FRET range and efficiency structures provide a powerful strategy to develop novel optoelectronic devices and long-range FRET imaging and sensing systems

    Stark Effect Control of the Scattering Properties of Plasmonic Nanogaps Containing an Organic Semiconductor

    Get PDF
    The development of actively tunable plas-monic nanostructures enables real-time reconfigurable and on demand enhancement of optical signals. This is an essential requirement for a wide range of applications such as sensing and nanophotonic devices, for which electrically driven tunability is required. By modifying the transition energies of a material via the application of an electric field, the Stark effect offers a reliable and practical approach to achieve such tunability. In this work, we report on the use of the Stark effect to control the scattering response of a plasmonic nanogap formed between a silver nanoparticle and an extended silver film separated by a thin layer of the organic semiconductor PQT-12. The plasmonic response of such nano-scattering sources follows the quadratic stark shift. Additionally, our approach allows to experimentally determine the polarizability of the semiconductor material embedded in the nanogap region, offering a new approach to probe the excitonic properties of extremely thin semi-conducting materials such as 2D materials under applied external electric field with nanoscale resolution

    Plasmons Enhancing Sub-Bandgap Photoconductivity in TiO<inf>2</inf> Nanoparticles Film

    Get PDF
    The coupling between sub-bandgap defect states and surface plasmon resonances in Au nanoparticles and its effects on the photoconductivity performance of TiO2 are investigated in both the ultraviolet (UV) and visible spectrum. Incorporating a 2 nm gold nanoparticle layer in the photodetector device architecture creates additional trapping pathways, resulting in a faster current decay under UV illumination and a significant enhancement in the visible photocurrent of TiO2, with an 8-fold enhancement of the defects-related photocurrent. We show that hot electron injection (HEI) and plasmonic resonance energy transfer (PRET) jointly contribute to the observed photoconductivity enhancement. In addition to shedding light on the below-band-edge photoconductivity of TiO2, our work provides insight into new methods to probe and examine the surface defects of metal oxide semiconductors using plasmonic resonances

    Probing the molecular orientation of a single conjugated polymer via nano-gap SERS

    Get PDF
    Determining the molecular orientation at the single molecule level is of key importance for a wide range of applications ranging from molecular electronic devices to biomedical applications. In this work surface-enhanced Raman scattering (SERS) was used to probe the light-emitting conjugated polymer F8-PFB at the single molecule level using nanoparticles on an extended metallic film nanogap. The directional field enhancement of the nanogap combined with density functional theory (DFT) calculations was used to determine the orientation of the molecule. This analysis revealed that the spin-coated conjugated polymer preferentially aligns its molecular chains parallel to the metallic substrate. The integration of this approach in nanofabrication and synthesis will have a profound impact on different fields ranging from molecular electronic devices to biomedical applications

    Magnetic Mode Coupling in Hyperbolic Bowtie Meta-Antennas

    Get PDF
    Hyperbolic metaparticles have emerged as the next step in metamaterial applications, providing tunable electromagnetic properties on demand. However, coupling of optical modes in hyperbolic meta-antennas has not been explored. Here, we present in detail the magnetic and electric dipolar modes supported by a hyperbolic bowtie meta-antenna and clearly demonstrate the existence of two magnetic coupling regimes in such hyperbolic systems. The coupling nature is shown to depend on the interplay of the magnetic dipole moments, controlled by the meta-antenna effective permittivity and nanogap size. In parallel, the meta-antenna effective permittivity offers fine control over the electrical field spatial distribution. Our work highlights new coupling mechanisms between hyperbolic systems that have not been reported before, with a detailed study of the magnetic coupling nature, as a function of the structural parameters of the hyperbolic meta-antenna, which opens the route toward a range of applications from magnetic nanolight sources to chiral quantum optics and quantum interfaces

    Biotic and Abiotic Stresses of Major Fruit Crops in Oman: A Review

    Get PDF
    Oman is located in an arid region of the world that is characterized by adverse climatic conditions, including heat and drought. In recent years, it has also been affected by climate turbulence and the occurrence of severe weather, such as cyclones and heat/cold waves affecting large agricultural areas of the country. Fruit cultivation area represents 31% of the total cultivated area (97,239.58 ha) in the country. However, the production share is only 17% of the total crop production in the country (2.6 million tons). About 90% of the fruit cultivation area is dominated by date palm, banana, lime, and mango. In addition to the abiotic stresses, such as drought, heat, and salinity, major fruit crops have declined in recent years due to various biotic stressors, primarily insect pests, and diseases. For several decades, the date palm has suffered from the Dubas bug and in recent years from Red Palm Weevil. Lime has been infected with Witch’s Broom Disease of Lime (WBDL) caused by ‘Candidatus Phytoplasma aurantifolia’ that has led to the decline of production to 25% from its peak in the nineties. Banana is Oman`s second-largest fruit crop in production and export. It has also been the subject of studies due to losses incurred by farmers during pre-and post-harvest stages, in addition to several pests and diseases that affect bananas in Oman. Mango is another major fruit crop that is primarily cultivated in northern Oman. Severe infection with mango decline has led to the eradication of mango orchards from many regions of Oman, particularly in Batinah Coast, where increased salinity has led to a decline in mango yield. Research conducted in Oman has investigated several aspects of these challenges. This review paper summarizes the outcome from studies conducted in the country and proposes directions towards resolving current and future challenges to the fruit industry
    • …
    corecore