164 research outputs found

    Time, action and psychosis: using subjective time to investigate the effects of ketamine on sense of agency

    Get PDF
    Sense of agency refers to the experience of initiating and controlling actions in order to influence events in the outside world. A disturbed sense of agency is found in certain psychiatric and neurological disorders, most notably schizophrenia. Sense of agency is associated with a subjective compression of time: actions and their outcomes are perceived as bound together in time. This is known as ‘intentional binding’ and, in healthy adults, depends partly on advance prediction of action outcomes. Notably, this predictive contribution is disrupted in patients with schizophrenia. In the present study we aimed to characterise the psychotomimetic effect of ketamine, a drug model for psychosis, on the predictive contribution to intentional binding. It was shown that ketamine produced a disruption that closely resembled previous data from patients in the early, prodromal, stage of schizophrenic illness. These results are discussed in terms of established models of delusion formation in schizophrenia. The link between time and agency, more generally, is also considered

    Changes in resting neural connectivity during propofol sedation.

    Get PDF
    BACKGROUND: The default mode network consists of a set of functionally connected brain regions (posterior cingulate, medial prefrontal cortex and bilateral parietal cortex) maximally active in functional imaging studies under "no task" conditions. It has been argued that the posterior cingulate is important in consciousness/awareness, but previous investigations of resting interactions between the posterior cingulate cortex and other brain regions during sedation and anesthesia have produced inconsistent results. METHODOLOGY/PRINCIPAL FINDINGS: We examined the connectivity of the posterior cingulate at different levels of consciousness. "No task" fMRI (BOLD) data were collected from healthy volunteers while awake and at low and moderate levels of sedation, induced by the anesthetic agent propofol. Our data show that connectivity of the posterior cingulate changes during sedation to include areas that are not traditionally considered to be part of the default mode network, such as the motor/somatosensory cortices, the anterior thalamic nuclei, and the reticular activating system. CONCLUSIONS/SIGNIFICANCE: This neuroanatomical signature resembles that of non-REM sleep, and may be evidence for a system that reduces its discriminable states and switches into more stereotypic patterns of firing under sedation

    Punctuated chromatin states regulate Plasmodium falciparum antigenic variation at the intron and 2 kb upstream regions

    Get PDF
    2 kb upstream region FAIRE-Seq signal comparison between var genes and different gene families (P-value is calculated based on Wilcoxon-Rank-Sum test, FDR indicates false discovery rate). (XLSX 53 kb

    A supervised blood vessel segmentation technique for digital Fundus images using Zernike Moment based features

    Get PDF
    This paper proposes a new supervised method for blood vessel segmentation using Zernike moment-based shape descriptors. The method implements a pixel wise classification by computing a 11-D feature vector comprising of both statistical (gray-level) features and shape-based (Zernike moment) features. Also the feature set contains optimal coefficients of the Zernike Moments which were derived based on the maximum differentiability between the blood vessel and background pixels. A manually selected training points obtained from the training set of the DRIVE dataset, covering all possible manifestations were used for training the ANN-based binary classifier. The method was evaluated on unknown test samples of DRIVE and STARE databases and returned accuracies of 0.945 and 0.9486 respectively, outperforming other existing supervised learning methods. Further, the segmented outputs were able to cover thinner blood vessels better than previous methods, aiding in early detection of pathologies

    A comparison of AC and HVDC options for the connection of offshore wind generation in Great Britain

    Get PDF
    This paper presents a comparison of two forms of cable connection of a distant offshore wind farm to a transmission system: AC and HVDC. The requirements of relevant industry standards in Great Britain (GB) that drive a connection design and, hence, its cost are highlighted along with an analysis of the ways in which AC cable connections might be made to comply while facilitating export of active power. Dynamic studies investigating responses to grid-side short circuit faults show that, in the particular scenarios studied, an AC connection of a wind farm in the place of a large synchronous generator is marginally detrimental while an HVDC connection is beneficial. A comparison of costs shows that the cross-over distance at which HVDC is cheaper than AC for wind farms of different sizes occurs at longer distances than have hitherto commonly been assumed, and AC connections benefit from reactive compensation not only at the point of common coupling and wind farm end but also at the connection mid-point

    Expandable multiterminal DC systems based on voltage droop

    Full text link

    Phenotypic and Molecular Analysis of the Effect of 20-hydroxyecdysone on the Human Filarial Parasite Brugia malayi

    Get PDF
    A homologue of the ecdysone receptor has been identified and shown to be responsive to 20- hydroxyecdysone in Brugia malayi. However, the role of this master regulator of insect development has not been delineated in filarial nematodes. Gravid adult female B. malayi cultured in the presence of 20-hydroxyecdysone produced significantly more microfilariae and abortive immature progeny than control worms, implicating the ecdysone receptor in regulation of embryogenesis and microfilarial development. Transcriptome analyses identified 30 genes whose expression was significantly up-regulated in 20-hydroxyecdysone-treated parasites compared with untreated controls. Of these, 18% were identified to be regulating transcription. A comparative proteomic analysis revealed 932 proteins to be present in greater amounts in extracts of 20- hydroxyecdysone-treated adult females than in extracts prepared from worms cultured in the absence of the hormone. Of the proteins exhibiting a greater than two-fold difference in the 20- hydroxyecdysone-treated versus untreated parasite extracts, 16% were involved in transcriptional regulation. RNA interference (RNAi) phenotype analysis of Caenorhabditis elegans orthologs revealed that phenotypes involved in developmental processes associated with embryogenesis were significantly over-represented in the transcripts and proteins that were up-regulated by exposure to 20-hydroxyecdysone. Taken together, the transcriptomic, proteomic and phenotypic data suggest that the filarial ecdysone receptor may play a role analogous to that in insects, where it serves as a regulator of egg development

    Malaria infected red blood cells release small regulatory RNAs through extracellular vesicles

    Get PDF
    The parasite Plasmodium falciparum causes the most severe form of malaria. Cell communication between parasites is an important mechanism to control population density and differentiation. The infected red blood cells (iRBCs) release small extracellular vesicles (EVs) that transfer cargoes between cells. The EVs synchronize the differentiation of the asexual parasites into gametocytes to initiate the transmission to the mosquito. Beside their role in parasite communication, EVs regulate vascular function. So far, the exact cargoes responsible for cellular communication remain unknown. We isolated EVs from cultured iRBCs to determine their small RNA content. We identified several types of human and plasmodial regulatory RNAs. While the miRNAs and tRNA-derived fragments were the most abundant human RNAs, we also found Y-RNAs, vault RNAs, snoRNAs and piRNAs. Interestingly, we found about 120 plasmodial RNAs, including mRNAs coding for exported proteins and proteins involved in drug resistance, as well as non-coding RNAs, such as rRNAs, small nuclear (snRNAs) and tRNAs. These data show, that iRBC-EVs carry small regulatory RNAs. A role in cellular communication is possible since the RNAs were transferred to endothelial cells. Furthermore, the presence of Plasmodium RNAs, in EVs suggests that they may be used as biomarker to track and detect disease

    Reorganisation of Brain Hubs across Altered States of Consciousness

    Get PDF
    Abstract: Patterns of functional interactions across distributed brain regions are suggested to provide a scaffold for the conscious processing of information, with marked topological alterations observed in loss of consciousness. However, establishing a firm link between macro-scale brain network organisation and conscious cognition requires direct investigations into neuropsychologically-relevant architectural modifications across systematic reductions in consciousness. Here we assessed both global and regional disturbances to brain graphs in a group of healthy participants across baseline resting state fMRI as well as two distinct levels of propofol-induced sedation. We found a persistent modular architecture, yet significant reorganisation of brain hubs that formed parts of a wider rich-club collective. Furthermore, the reduction in the strength of rich-club connectivity was significantly associated with the participants’ performance in a semantic judgment task, indicating the importance of this higher-order topological feature for conscious cognition. These results highlight a remarkable interplay between global and regional properties of brain functional interactions in supporting conscious cognition that is relevant to our understanding of clinical disorders of consciousness

    The apicoplast link to fever-survival and artemisinin-resistance in the malaria parasite.

    Get PDF
    The emergence and spread of Plasmodium falciparum parasites resistant to front-line antimalarial artemisinin-combination therapies (ACT) threatens to erase the considerable gains against the disease of the last decade. Here, we develop a large-scale phenotypic screening pipeline and use it to carry out a large-scale forward-genetic phenotype screen in P. falciparum to identify genes allowing parasites to survive febrile temperatures. Screening identifies more than 200 P. falciparum mutants with differential responses to increased temperature. These mutants are more likely to be sensitive to artemisinin derivatives as well as to heightened oxidative stress. Major processes critical for P. falciparum tolerance to febrile temperatures and artemisinin include highly essential, conserved pathways associated with protein-folding, heat shock and proteasome-mediated degradation, and unexpectedly, isoprenoid biosynthesis, which originated from the ancestral genome of the parasite's algal endosymbiont-derived plastid, the apicoplast. Apicoplast-targeted genes in general are upregulated in response to heat shock, as are other Plasmodium genes with orthologs in plant and algal genomes. Plasmodium falciparum parasites appear to exploit their innate febrile-response mechanisms to mediate resistance to artemisinin. Both responses depend on endosymbiont-derived genes in the parasite's genome, suggesting a link to the evolutionary origins of Plasmodium parasites in free-living ancestors
    • …
    corecore