21 research outputs found
Early Release Science of the Exoplanet WASP-39b with JWST NIRSpec G395H
Measuring the abundances of carbon and oxygen in exoplanet atmospheres is
considered a crucial avenue for unlocking the formation and evolution of
exoplanetary systems. Access to an exoplanet's chemical inventory requires
high-precision observations, often inferred from individual molecular
detections with low-resolution space-based and high-resolution ground-based
facilities. Here we report the medium-resolution (R600) transmission
spectrum of an exoplanet atmosphere between 3-5 m covering multiple
absorption features for the Saturn-mass exoplanet WASP-39b, obtained with JWST
NIRSpec G395H. Our observations achieve 1.46x photon precision, providing an
average transit depth uncertainty of 221 ppm per spectroscopic bin, and present
minimal impacts from systematic effects. We detect significant absorption from
CO (28.5) and HO (21.5), and identify SO as the
source of absorption at 4.1 m (4.8). Best-fit atmospheric models
range between 3 and 10x solar metallicity, with sub-solar to solar C/O ratios.
These results, including the detection of SO, underscore the importance of
characterising the chemistry in exoplanet atmospheres, and showcase NIRSpec
G395H as an excellent mode for time series observations over this critical
wavelength range.Comment: 44 pages, 11 figures, 3 tables. Resubmitted after revision to Natur
The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems V: Do Self-Consistent Atmospheric Models Represent JWST Spectra? A Showcase With VHS 1256 b
The unprecedented medium-resolution (R~1500-3500) near- and mid-infrared
(1-18um) spectrum provided by JWST for the young (140+/-20Myr) low-mass
(12-20MJup) L-T transition (L7) companion VHS1256b gives access to a catalogue
of molecular absorptions. In this study, we present a comprehensive analysis of
this dataset utilizing a forward modelling approach, applying our Bayesian
framework, ForMoSA. We explore five distinct atmospheric models to assess their
performance in estimating key atmospheric parameters: Teff, log(g), [M/H], C/O,
gamma, fsed, and R. Our findings reveal that each parameter's estimate is
significantly influenced by factors such as the wavelength range considered and
the model chosen for the fit. This is attributed to systematic errors in the
models and their challenges in accurately replicating the complex atmospheric
structure of VHS1256b, notably the complexity of its clouds and dust
distribution. To propagate the impact of these systematic uncertainties on our
atmospheric property estimates, we introduce innovative fitting methodologies
based on independent fits performed on different spectral windows. We finally
derived a Teff consistent with the spectral type of the target, considering its
young age, which is confirmed by our estimate of log(g). Despite the
exceptional data quality, attaining robust estimates for chemical abundances
[M/H] and C/O, often employed as indicators of formation history, remains
challenging. Nevertheless, the pioneering case of JWST's data for VHS1256b has
paved the way for future acquisitions of substellar spectra that will be
systematically analyzed to directly compare the properties of these objects and
correct the systematics in the models.Comment: 32 pages, 16 figures, 6 tables, 2 appendice
The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems II: A 1 to 20 Micron Spectrum of the Planetary-Mass Companion VHS 1256-1257 b
We present the highest fidelity spectrum to date of a planetary-mass object.
VHS 1256 b is a 20 M widely separated (8\arcsec, a =
150 au), young, planetary-mass companion that shares photometric colors and
spectroscopic features with the directly imaged exoplanets HR 8799 c, d, and e.
As an L-to-T transition object, VHS 1256 b exists along the region of the
color-magnitude diagram where substellar atmospheres transition from cloudy to
clear. We observed VHS 1256~b with \textit{JWST}'s NIRSpec IFU and MIRI MRS
modes for coverage from 1 m to 20 m at resolutions of 1,000 -
3,700. Water, methane, carbon monoxide, carbon dioxide, sodium, and potassium
are observed in several portions of the \textit{JWST} spectrum based on
comparisons from template brown dwarf spectra, molecular opacities, and
atmospheric models. The spectral shape of VHS 1256 b is influenced by
disequilibrium chemistry and clouds. We directly detect silicate clouds, the
first such detection reported for a planetary-mass companion.Comment: Accepted ApJL Iterations of spectra reduced by the ERS team are
hosted at this link:
https://github.com/bemiles/JWST_VHS1256b_Reduction/tree/main/reduced_spectr
The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems IV: NIRISS Aperture Masking Interferometry Performance and Lessons Learned
We present a performance analysis for the aperture masking interferometry
(AMI) mode on board the James Webb Space Telescope Near Infrared Imager and
Slitless Spectrograph (JWST/NIRISS). Thanks to self-calibrating observables,
AMI accesses inner working angles down to and even within the classical
diffraction limit. The scientific potential of this mode has recently been
demonstrated by the Early Release Science (ERS) 1386 program with a deep search
for close-in companions in the HIP 65426 exoplanetary system. As part of ERS
1386, we use the same dataset to explore the random, static, and calibration
errors of NIRISS AMI observables. We compare the observed noise properties and
achievable contrast to theoretical predictions. We explore possible sources of
calibration errors, and show that differences in charge migration between the
observations of HIP 65426 and point-spread function calibration stars can
account for the achieved contrast curves. Lastly, we use self-calibration tests
to demonstrate that with adequate calibration, NIRISS AMI can reach contrast
levels of mag. These tests lead us to observation planning
recommendations and strongly motivate future studies aimed at producing
sophisticated calibration strategies taking these systematic effects into
account. This will unlock the unprecedented capabilities of JWST/NIRISS AMI,
with sensitivity to significantly colder, lower mass exoplanets than
ground-based setups at orbital separations inaccessible to JWST coronagraphy.Comment: 20 pages, 12 figures, submitted to AAS Journal
The \textit{JWST} Early Release Science Program for Direct Observations of Exoplanetary Systems III: Aperture Masking Interferometric Observations of the star HIP\,65426 at
We present aperture masking interferometry (AMI) observations of the star HIP
65426 at as a part of the \textit{JWST} Direct Imaging Early
Release Science (ERS) program obtained using the Near Infrared Imager and
Slitless Spectrograph (NIRISS) instrument. This mode provides access to very
small inner working angles (even separations slightly below the Michelson limit
of for an interferometer), which are inaccessible with the
classical inner working angles of the \textit{JWST} coronagraphs. When combined
with \textit{JWST}'s unprecedented infrared sensitivity, this mode has the
potential to probe a new portion of parameter space across a wide array of
astronomical observations. Using this mode, we are able to achieve a contrast
of \,mag relative to the host star at a separation
of {\sim}0.07\arcsec but detect no additional companions interior to the
known companion HIP\,65426\,b. Our observations thus rule out companions more
massive than 10{-}12\,\rm{M\textsubscript{Jup}} at separations
from HIP\,65426, a region out of reach of ground or
space-based coronagraphic imaging. These observations confirm that the AMI mode
on \textit{JWST} is sensitive to planetary mass companions orbiting at the
water frost line, even for more distant stars at 100\,pc. This result
will allow the planning and successful execution of future observations to
probe the inner regions of nearby stellar systems, opening essentially
unexplored parameter space.Comment: 15 pages, 9 figures, submitted to ApJ Letter
Recommended from our members
The JWST Early-release Science Program for Direct Observations of Exoplanetary Systems II: A 1 to 20 μ m Spectrum of the Planetary-mass Companion VHS 1256–1257 b
We present the highest fidelity spectrum to date of a planetary-mass object. VHS 1256 b is a MJup widely separated (∼8″, a = 150 au), young, planetary-mass companion that shares photometric colors and spectroscopic features with the directly imaged exoplanets HR 8799c, d, and e. As an L-to-T transition object, VHS 1256 b exists along the region of the color–magnitude diagram where substellar atmospheres transition from cloudy to clear. We observed VHS 1256 b with JWST's NIRSpec IFU and MIRI MRS modes for coverage from 1 to 20 μm at resolutions of ∼1000–3700. Water, methane, carbon monoxide, carbon dioxide, sodium, and potassium are observed in several portions of the JWST spectrum based on comparisons from template brown dwarf spectra, molecular opacities, and atmospheric models. The spectral shape of VHS 1256 b is influenced by disequilibrium chemistry and clouds. We directly detect silicate clouds, the first such detection reported for a planetary-mass companion
The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems. IV. NIRISS Aperture Masking Interferometry Performance and Lessons Learned
We present a performance analysis for the aperture masking interferometry (AMI) mode on board the James Webb Space Telescope Near Infrared Imager and Slitless Spectrograph (JWST/NIRISS). Thanks to self-calibrating observables, AMI accesses inner working angles down to and even within the classical diffraction limit. The scientific potential of this mode has recently been demonstrated by the Early Release Science (ERS) 1386 program with a deep search for close-in companions in the HIP 65426 exoplanetary system. As part of ERS 1386, we use the same data set to explore the random, static, and calibration errors of NIRISS AMI observables. We compare the observed noise properties and achievable contrast to theoretical predictions. We explore possible sources of calibration errors and show that differences in charge migration between the observations of HIP 65426 and point-spread function calibration stars can account for the achieved contrast curves. Lastly, we use self-calibration tests to demonstrate that with adequate calibration NIRISS F380M AMI can reach contrast levels of ∼9–10 mag at ≳λ/D. These tests lead us to observation planning recommendations and strongly motivate future studies aimed at producing sophisticated calibration strategies taking these systematic effects into account. This will unlock the unprecedented capabilities of JWST/NIRISS AMI, with sensitivity to significantly colder, lower-mass exoplanets than lower-contrast ground-based AMI setups, at orbital separations inaccessible to JWST coronagraphy
Recommended from our members
The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems. V. Do Self-consistent Atmospheric Models Represent JWST Spectra? A Showcase with VHS 1256–1257 b
The unprecedented medium-resolution (R λ ∼ 1500–3500) near- and mid-infrared (1–18 μm) spectrum provided by JWST for the young (140 ± 20 Myr) low-mass (12–20 MJup) L–T transition (L7) companion VHS 1256 b gives access to a catalog of molecular absorptions. In this study, we present a comprehensive analysis of this data set utilizing a forward-modeling approach applying our Bayesian framework, ForMoSA. We explore five distinct atmospheric models to assess their performance in estimating key atmospheric parameters: Teff, log(g), [M/H], C/O, γ, f sed, and R. Our findings reveal that each parameter’s estimate is significantly influenced by factors such as the wavelength range considered and the model chosen for the fit. This is attributed to systematic errors in the models and their challenges in accurately replicating the complex atmospheric structure of VHS 1256 b, notably the complexity of its clouds and dust distribution. To propagate the impact of these systematic uncertainties on our atmospheric property estimates, we introduce innovative fitting methodologies based on independent fits performed on different spectral windows. We finally derived a Teff consistent with the spectral type of the target, considering its young age, which is confirmed by our estimate of log(g). Despite the exceptional data quality, attaining robust estimates for chemical abundances [M/H] and C/O, often employed as indicators of formation history, remains challenging. Nevertheless, the pioneering case of JWST’s data for VHS 1256 b has paved the way for future acquisitions of substellar spectra that will be systematically analyzed to directly compare the properties of these objects and correct the systematics in the models
Products and Models for "Early Release Science of the Exoplanet WASP-39b with JWST NIRSpec G395H"
Associated Publication: https://www.nature.com/articles/s41586-022-05591- Overview: Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems. Access to an exoplanet’s chemical inventory requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based and high-resolution ground-based facilities. Here we report the medium-resolution (R≈600) transmission spectrum of an exoplanet atmosphere between 3–5 m covering multiple absorption features for the Saturn-mass exoplanet WASP-39b, obtained with JWST NIRSpec G395H. Our observations achieve 1.46x photon precision, providing an average transit depth uncertainty of 221 ppm per spectroscopic bin, and present minimal impacts from systematic effects. We detect significant absorption from CO2 (28.5) and H2O (21.5), and identify SO2 as the source of absorption at 4.1 m (4.8). Best-fit atmospheric models range between 3 and 10x solar metallicity, with sub-solar to solar C/O ratios. These results, including the detection of SO2, underscore the importance of characterising the chemistry in exoplanet atmospheres, and showcase NIRSpec G395H as an excellent mode for time series observations over this critical wavelength range
JWST COMPASS: NIRSpec/G395H Transmission Observations of the Super-Earth TOI-836b
Data and models accompanying the publication "JWST COMPASS: NIRSpec/G395H Transmission Observations of the Super-Earth TOI-836b". Here we include: Data, ExoTiC-JEDI light curves and transmission spectrum of JWST NIRSpec/G395H transit observations Data, Eureka! light curves and transmission spectrum of JWST NIRSpec/G395H transit observations Models, PICASO models and data shown in Figure 5 Manuscript DOI: [] and [paper link