56,589 research outputs found
Creep of plasma sprayed zirconia
Specimens of plasma-sprayed zirconia thermal barrier coatings with three different porosities and different initial particle sizes were deformed in compression at initial loads of 1000, 2000, and 3500 psi and temperatures of 1100 C, 1250 C, and 1400 C. The coatings were stabilized with lime, magnesia, and two different concentrations of yttria. Creep began as soon as the load was applied and continued at a constantly decreasing rate until the load was removed. Temperature and stabilization had a pronounced effect on creep rate. The creep rate for 20% Y2O3-80% ZrO2 was 1/3 to 1/2 that of 8% Y2O3-92% ZrO2. Both magnesia and calcia stabilized ZrO2 crept at a rate 5 to 10 times that of the 20% Y2O3 material. A near proportionality between creep rate and applied stress was observed. The rate controlling process appeared to be thermally activated, with an activation energy of approximately 100 cal/gm mole K. Creep deformation was due to cracking and particle sliding
Hexagonal spiral growth in the absence of a substrate
Experiments on the formation of spiraling hexagons (350 - 1000 nm in width)
from a solution of nanoparticles are presented. Transmission electron
microscopy images of the reaction products of chemically synthesized cadmium
nanocrystals indicate that the birth of the hexagons proceeds without
assistance from static screw or edge dislocatons, that is, they spiral without
constraints provided by an underlying substrate. Instead, the apparent growth
mechanism relies on what we believe is a dynamical dislocation identified as a
dense aggregate of small nanocrystals that straddles the spiraling hexagon at
the crystal surface. This nanocrystal bundle, which we term the "feeder", also
appears to release nanocrystals into the spiral during the growth process.Comment: 4 pages, 5 figure
Flight/ground sample comparison relating to flight experiment M552, exothermic brazing
Comparisons were made between Skylab and ground-based specimens of nickel and stainless steel which were vacuum brazed using silver-copper-lithium alloy with various joint configurations. It was established that the absence of gravity greatly extends the scope of brazing since capillary flow can proceed without gravity interference. There was also evidence of enhanced transport, primarily in that liquid silver copper alloy dissolves nickel to a much greater extent in the zero gravity environment
Mapping and Characterizing Subtidal Oyster Reefs Using Acoustic Techniques, Underwater Videography and Quadrat Counts
Populations of the eastern oyster Crassostrea virginica have been in long-term decline in most areas. A major hindrance to effective oyster management has been lack of a methodology for accurately and economically obtaining data on their distribution and abundance patterns. Here, we describe early results from studies aimed at development of a mapping and monitoring protocol involving acoustic techniques, underwater videography, and destructive sampling (excavated quadrats). Two subtidal reefs in Great Bay, New Hampshire, were mapped with side-scan sonar and with videography by systematically imaging multiple sampling cells in a grid covering the same areas. A single deployment was made in each cell, and a 5-10-s recording was made of a 0.25-m2 area; the location of each image was determined using a differential global position system. A still image was produced for each of the cells and all (n = 40 or 44) were combined into a single photomontage overlaid onto a geo-referenced base map for each reef using Arc View geographic information system. Quadrat (0.25 m2 ) samples were excavated from 9 or 10 of the imaged areas on each reef, and all live oysters were counted and measured. Intercomparisons of the acoustic, video, and quadrat data suggest: (1) acoustic techniques and systematic videography can readily delimit the boundaries of oyster reefs; (2) systematic videography can yield quantitative data on shell densities and information on reef structure; and (3) some combination of acoustics, systematic videography, and destructive sampling can provide spatially detailed information on oyster reef characteristics
Large perturbation flow field analysis and simulation for supersonic inlets
An analysis technique for simulation of supersonic mixed compression inlets with large flow field perturbations is presented. The approach is based upon a quasi-one-dimensional inviscid unsteady formulation which includes engineering models of unstart/restart, bleed, bypass, and geometry effects. Numerical solution of the governing time dependent equations of motion is accomplished through a shock capturing finite difference algorithm, of which five separate approaches are evaluated. Comparison with experimental supersonic wind tunnel data is presented to verify the present approach for a wide range of transient inlet flow conditions
Radar mapping, archaeology, and ancient land use in the Maya lowlands
Data from the use of synthetic aperture radar in aerial survey of the southern Maya lowlands suggest the presence of very large areas drained by ancient canals for the purpose of intensive cultivation. Preliminary ground checks in several very limited areas confirm the existence of canals and raised fields. Excavations and ground surveys by several scholars provide valuable comparative information. Taken together, the new data suggest that Late Classic period Maya civilization was firmly grounded in large-scale and intensive cultivation of swampy zones
Parameters for Twisted Representations
The study of Hermitian forms on a real reductive group gives rise, in the
unequal rank case, to a new class of Kazhdan-Lusztig-Vogan polynomials. These
are associated with an outer automorphism of , and are related to
representations of the extended group . These polynomials were
defined geometrically by Lusztig and Vogan in "Quasisplit Hecke Algebras and
Symmetric Spaces", Duke Math. J. 163 (2014), 983--1034. In order to use their
results to compute the polynomials, one needs to describe explicitly the
extension of representations to the extended group. This paper analyzes these
extensions, and thereby gives a complete algorithm for computing the
polynomials. This algorithm is being implemented in the Atlas of Lie Groups and
Representations software
Tools for active control system design
Efficient control law analysis and design tools which properly account for the interaction of flexible structures, unsteady aerodynamics and active controls are developed. Development, application, validation and documentation of efficient multidisciplinary computer programs for analysis and design of active control laws are also discussed
General bounds on the Wilson-Dirac operator
Lower bounds on the magnitude of the spectrum of the Hermitian Wilson-Dirac
operator H(m) have previously been derived for 0<m<2 when the lattice gauge
field satisfies a certain smoothness condition. In this paper lower bounds are
derived for 2p-2<m<2p for general p=1,2,...,d where d is the spacetime
dimension. The bounds can alternatively be viewed as localisation bounds on the
real spectrum of the usual Wilson-Dirac operator. They are needed for the
rigorous evaluation of the classical continuum limit of the axial anomaly and
index of the overlap Dirac operator at general values of m, and provide
information on the topological phase structure of overlap fermions. They are
also useful for understanding the instanton size-dependence of the real
spectrum of the Wilson-Dirac operator in an instanton background.Comment: 26 pages, 2 figures. v3: Completely rewritten with new material and
new title; to appear in Phys.Rev.
- …
