1,586 research outputs found
The QGP phase in relativistic heavy-ion collisions
The dynamics of partons, hadrons and strings in relativistic nucleus-nucleus
collisions is analyzed within the novel Parton-Hadron-String Dynamics (PHSD)
transport approach, which is based on a dynamical quasiparticle model for
partons (DQPM) matched to reproduce recent lattice-QCD results - including the
partonic equation of state - in thermodynamic equilibrium. The transition from
partonic to hadronic degrees of freedom is described by covariant transition
rates for the fusion of quark-antiquark pairs or three quarks (antiquarks),
respectively, obeying flavor current-conservation, color neutrality as well as
energy-momentum conservation. The PHSD approach is applied to nucleus-nucleus
collisions from low SIS to RHIC energies. The traces of partonic interactions
are found in particular in the elliptic flow of hadrons as well as in their
transverse mass spectra.Comment: To be published by Springer in Proceedings of the International
Symposium on `Exciting Physics', Makutsi-Range, South Africa, 13-20 November,
201
Recommended from our members
Retrospective model-based inference guides model-free credit assignment
An extensive reinforcement learning literature shows that organisms assign credit efficiently, even under conditions of state uncertainty. However, little is known about credit-assignment when state uncertainty is subsequently resolved. Here, we address this problem within the framework of an interaction between model-free (MF) and model-based (MB) control systems. We present and support experimentally a theory of MB retrospective-inference. Within this framework, a MB system resolves uncertainty that prevailed when actions were taken thus guiding an MF credit-assignment. Using a task in which there was initial uncertainty about the lotteries that were chosen, we found that when participants’ momentary uncertainty about which lottery had generated an outcome was resolved by provision of subsequent information, participants preferentially assigned credit within a MF system to the lottery they retrospectively inferred was responsible for this outcome. These findings extend our knowledge about the range of MB functions and the scope of system interactions
Charged, conformal non-relativistic hydrodynamics
We embed a holographic model of an U(1) charged fluid with Galilean
invariance in string theory and calculate its specific heat capacity and
Prandtl number. Such theories are generated by a R-symmetry twist along a null
direction of a N=1 superconformal theory. We study the hydrodynamic properties
of such systems employing ideas from the fluid-gravity correspondence.Comment: 31 pages, 1 figure, JHEP3 style, refs added, typos corrected, missing
terms in spatial charge current and field corrections added, to be published
in JHE
An elementary stringy estimate of transport coefficients of large temperature QCD
Modeling QCD at large temperature with a simple holographic five dimensional
theory encoding minimal breaking of conformality, allows for the calculation of
all the transport coefficients, up to second order, in terms of a single
parameter. In particular, the shear and bulk relaxation times are provided. The
result follows by deforming the AdS background with a scalar dual to a
marginally relevant operator, at leading order in the deformation parameter.Comment: 11 pages; v2: comments and references adde
The Bulk Channel in Thermal Gauge Theories
We investigate the thermal correlator of the trace of the energy-momentum
tensor in the SU(3) Yang-Mills theory. Our goal is to constrain the spectral
function in that channel, whose low-frequency part determines the bulk
viscosity. We focus on the thermal modification of the spectral function,
. Using the operator-product expansion we give
the high-frequency behavior of this difference in terms of thermodynamic
potentials. We take into account the presence of an exact delta function
located at the origin, which had been missed in previous analyses. We then
combine the bulk sum rule and a Monte-Carlo evaluation of the Euclidean
correlator to determine the intervals of frequency where the spectral density
is enhanced or depleted by thermal effects. We find evidence that the thermal
spectral density is non-zero for frequencies below the scalar glueball mass
and is significantly depleted for .Comment: (1+25) pages, 6 figure
Back-reaction of Non-supersymmetric Probes: Phase Transition and Stability
We consider back-reaction by non-supersymmetric D7/anti-D7 probe branes in
the Kuperstein-Sonnenschein model at finite temperature. Using the smearing
technique, we obtain an analytical solution for the back-reacted background to
leading order in N_f/N_c. This back-reaction explicitly breaks the conformal
invariance and introduces a dimension 6 operator in the dual field theory which
is an irrelevant deformation of the original conformal field theory. We further
probe this back-reacted background by introducing an additional set of probe
brane/anti-brane. This additional probe sector undergoes a chiral phase
transition at finite temperature, which is absent when the back-reaction
vanishes. We investigate the corresponding phase diagram and the thermodynamics
associated with this phase transition. We also argue that additional probes do
not suffer from any instability caused by the back-reaction, which suggests
that this system is stable beyond the probe limit.Comment: 56 pages, 8 figures. References updated, improved discussion on
dimension eight operato
Bulk spectral function sum rule in QCD-like theories with a holographic dual
We derive the sum rule for the spectral function of the stress-energy tensor
in the bulk (uniform dilatation) channel in a general class of strongly coupled
field theories. This class includes theories holographically dual to a theory
of gravity coupled to a single scalar field, representing the operator of the
scale anomaly. In the limit when the operator becomes marginal, the sum rule
coincides with that in QCD. Using the holographic model, we verify explicitly
the cancellation between large and small frequency contributions to the
spectral integral required to satisfy the sum rule in such QCD-like theories.Comment: 16 pages, 2 figure
Shallow water marine sediment bacterial community shifts along a natural CO2 gradient in the Mediterranean Sea off Vulcano, Italy.
The effects of increasing atmospheric CO(2) on ocean ecosystems are a major environmental concern, as rapid shoaling of the carbonate saturation horizon is exposing vast areas of marine sediments to corrosive waters worldwide. Natural CO(2) gradients off Vulcano, Italy, have revealed profound ecosystem changes along rocky shore habitats as carbonate saturation levels decrease, but no investigations have yet been made of the sedimentary habitat. Here, we sampled the upper 2 cm of volcanic sand in three zones, ambient (median pCO(2) 419 μatm, minimum Ω(arag) 3.77), moderately CO(2)-enriched (median pCO(2) 592 μatm, minimum Ω(arag) 2.96), and highly CO(2)-enriched (median pCO(2) 1611 μatm, minimum Ω(arag) 0.35). We tested the hypothesis that increasing levels of seawater pCO(2) would cause significant shifts in sediment bacterial community composition, as shown recently in epilithic biofilms at the study site. In this study, 454 pyrosequencing of the V1 to V3 region of the 16S rRNA gene revealed a shift in community composition with increasing pCO(2). The relative abundances of most of the dominant genera were unaffected by the pCO(2) gradient, although there were significant differences for some 5 % of the genera present (viz. Georgenia, Lutibacter, Photobacterium, Acinetobacter, and Paenibacillus), and Shannon Diversity was greatest in sediments subject to long-term acidification (>100 years). Overall, this supports the view that globally increased ocean pCO(2) will be associated with changes in sediment bacterial community composition but that most of these organisms are resilient. However, further work is required to assess whether these results apply to other types of coastal sediments and whether the changes in relative abundance of bacterial taxa that we observed can significantly alter the biogeochemical functions of marine sediments
Thermal photons in QGP and non-ideal effects
We investigate the thermal photon production-rates using one dimensional
boost-invariant second order relativistic hydrodynamics to find proper time
evolution of the energy density and the temperature. The effect of
bulk-viscosity and non-ideal equation of state are taken into account in a
manner consistent with recent lattice QCD estimates. It is shown that the
\textit{non-ideal} gas equation of state i.e behaviour
of the expanding plasma, which is important near the phase-transition point,
can significantly slow down the hydrodynamic expansion and thereby increase the
photon production-rates. Inclusion of the bulk viscosity may also have similar
effect on the hydrodynamic evolution. However the effect of bulk viscosity is
shown to be significantly lower than the \textit{non-ideal} gas equation of
state. We also analyze the interesting phenomenon of bulk viscosity induced
cavitation making the hydrodynamical description invalid. We include the
viscous corrections to the distribution functions while calculating the photon
spectra. It is shown that ignoring the cavitation phenomenon can lead to
erroneous estimation of the photon flux.Comment: 11 pages, 13 figures; accepted for publication in JHE
D3-D7 Quark-Gluon Plasmas at Finite Baryon Density
We present the string dual to SU(Nc) N=4 SYM, coupled to Nf massless
fundamental flavors, at finite temperature and baryon density. The solution is
determined by two dimensionless parameters, both depending on the 't Hooft
coupling at the scale set by the temperature T:
, weighting the backreaction of the flavor
fields and , where is the
baryon density. For small values of these two parameters the solution is given
analytically up to second order. We study the thermodynamics of the system in
the canonical and grand-canonical ensembles. We then analyze the energy loss of
partons moving through the plasma, computing the jet quenching parameter and
studying its dependence on the baryon density. Finally, we analyze certain
"optical" properties of the plasma. The whole setup is generalized to non
abelian strongly coupled plasmas engineered on D3-D7 systems with D3-branes
placed at the tip of a generic singular Calabi-Yau cone. In all the cases,
fundamental matter fields are introduced by means of homogeneously smeared
D7-branes and the flavor symmetry group is thus a product of abelian factors.Comment: 27 pages; v2: 29 pages, 1 (new) figure, new section 4.4 on optical
properties, references, comments added; v3: eq. (3.19), comments and a
reference adde
- …
