6,048 research outputs found
Asymptotically Stationary and Static Space-times and Shear-free Null Geodesic Congruences
In classical electromagnetic theory, one formally defines the complex dipole
moment (the electric plus 'i' magnetic dipole) and then computes (and defines)
the complex center of charge by transforming to a complex frame where the
complex dipole moment vanishes. Analogously in asymptotically flat space-times
it has been shown that one can determine the complex center of mass by
transforming the complex gravitational dipole (mass dipole plus 'i' angular
momentum) (via an asymptotic tetrad trasnformation) to a frame where the
complex dipole vanishes. We apply this procedure to such space-times which are
asymptotically stationary or static, and observe that the calculations can be
performed exactly, without any use of the approximation schemes which must be
employed in general. In particular, we are able to exactly calculate complex
center of mass and charge world-lines for such space-times, and - as a special
case - when these two complex world-lines coincide, we recover the Dirac value
of the gyromagnetic ratio.Comment: 11 page
The Generalized Good Cut Equation
The properties of null geodesic congruences (NGCs) in Lorentzian manifolds
are a topic of considerable importance. More specifically NGCs with the special
property of being shear-free or asymptotically shear-free (as either infinity
or a horizon is approached) have received a great deal of recent attention for
a variety of reasons. Such congruences are most easily studied via solutions to
what has been referred to as the 'good cut equation' or the 'generalization
good cut equation'. It is the purpose of this note to study these equations and
show their relationship to each other. In particular we show how they all have
a four complex dimensional manifold (known as H-space, or in a special case as
complex Minkowski space) as a solution space.Comment: 12 page
The Real Meaning of Complex Minkowski-Space World-Lines
In connection with the study of shear-free null geodesics in Minkowski space,
we investigate the real geometric effects in real Minkowski space that are
induced by and associated with complex world-lines in complex Minkowski space.
It was already known, in a formal manner, that complex analytic curves in
complex Minkowski space induce shear-free null geodesic congruences. Here we
look at the direct geometric connections of the complex line and the real
structures. Among other items, we show, in particular, how a complex world-line
projects into the real Minkowski space in the form of a real shear-free null
geodesic congruence.Comment: 16 page
Color Fields on the Light-Shell
We study the classical color radiation from very high energy collisions that
produce colored particles. In the extreme high energy limit, the classical
color fields are confined to a light-shell expanding at and are associated
with a non-linear -model on the 2D light-shell with specific symmetry
breaking terms. We argue that the quantum version of this picture exhibits
asymptotic freedom and may be a useful starting point for an effective
light-shell theory of the structure between the jets at a very high energy
collider.Comment: 11 pages, no figure
Super star cluster feedback driving ionization, shocks and outflows in the halo of the nearby starburst ESO 338-IG04
Stellar feedback strongly affects the interstellar medium (ISM) of galaxies.
Stellar feedback in the first galaxies likely plays a major role in enabling
the escape of LyC photons, which contribute to the re-ionization of the
Universe. Nearby starburst galaxies serve as local analogues allowing for a
spatially resolved assessment of the feedback processes in these galaxies. We
characterize the feedback effects from the star clusters in the local
high-redshift analogue ESO 338-IG04 on the ISM and compare the results with the
properties of the most massive clusters. We use high quality VLT/MUSE optical
integral field data to derive the physical properties of the ISM such as
ionization, density, shocks, and perform new fitting of the spectral energy
distributions of the brightest clusters in ESO 338-IG04 from HST imaging. ESO
338-IG04 has a large ionized halo which we detect to a distance of 9 kpc. We
identify 4 Wolf-Rayet (WR) clusters based on the blue and red WR bump. We
follow previously identified ionization cones and find that the ionization of
the halo increases with distance. Analysis of the galaxy kinematics shows two
complex outflows driven by the numerous young clusters in the galaxy. We find a
ring of shocked emission traced by an enhanced [OI]/H ratio surrounding
the starburst and at the end of the outflow. Finally we detect nitrogen
enriched gas associated with the outflow, likely caused by the WR stars in the
massive star clusters. Photo-ionization dominates the central starburst and
sets the ionization structure of the entire halo, resulting in a density
bounded halo, facilitating the escape of LyC photons. Outside the central
starburst, shocks triggered by an expanding super bubble become important. The
shocks at the end of the outflow suggest interaction between the hot outflowing
material and the more quiescent halo gas.Comment: Accepted for publication in Astronomy and Astrophysics, 22 pages, 15
figure
Age Dating Stellar Populations in the Near Infrared: An absolute age indicator from the presence/absence of red supergiants
The determination of age is a critical component in the study of a population
of stellar clusters. In this letter we present a new absolute age indicator for
young massive star clusters based on J-H colour. This novel method identifies
clusters as older or younger than 5.7 +/- 0.8 Myr based on the appearance of
the first population of red supergiant stars. We test the technique on the
stellar cluster population of the nearby spiral galaxy, M83, finding good
agreement with the theoretical predictions. The localisation of this technique
to the near-IR promises that it may be used well into the future with space--
and ground--based missions optimised for near-IR observations.Comment: 5 pages, 5 figures. Accepted to MNRAS, November 201
VLT/MUSE view of the highly ionized outflow cones in the nearby starburst ESO338-IG04
The Ly line is an important diagnostic for star formation at high
redshift, but interpreting its flux and line profile is difficult because of
the resonance nature of Ly. Trends between the escape of Ly
photons and dust and properties of the interstellar medium (ISM) have been
found, but detailed comparisons between Ly emission and the properties
of the gas in local high-redshift analogs are vital for understanding the
relation between Ly emission and galaxy properties. For the first time,
we can directly infer the properties of the ionized gas at the same location
and similar spatial scales of the extended Ly halo around ESO 338-IG04.
We obtained VLT/MUSE integral field spectra. We used ionization parameter
mapping of the [SII]/[OIII] line ratio and the kinematics of H to study
the ionization state and kinematics of the ISM of ESO338-IG04. The velocity map
reveals two outflows. The entire central area of the galaxy is highly ionized
by photons leaking from the HII regions around the youngest star clusters.
Three highly ionized cones have been identified, of which one is associated
with an outflow. We propose a scenario where the outflows are created by
mechanical feedback of the older clusters, while the highly ionized gas is
caused by the hard ionizing photons emitted by the youngest clusters. A
comparison with the Ly map shows that the (approximately bipolar)
asymmetries observed in the Ly emission are consistent with the base of
the outflows detected in H. No clear correlation with the ionization
cones is found. The mechanical and ionization feedback of star clusters
significantly changes the state of the ISM by creating ionized cones and
outflows. The comparison with Ly suggests that especially the outflows
could facilitate the escape of Ly photons [Abridged].Comment: Accepted for publication in A&A Letters, 4 pages, 2 figure
Major impact from a minor merger - The extraordinary hot molecular gas flow in the Eye of the NGC 4194 Medusa galaxy
Minor mergers are important processes contributing significantly to how
galaxies evolve across the age of the Universe. Their impact on supermassive
black hole growth and star formation is profound. The detailed study of dense
molecular gas in galaxies provides an important test of the validity of the
relation between star formation rate and HCN luminosity on different galactic
scales. We use observations of HCN, HCO+1-0 and CO3-2 to study the dense gas
properties in the Medusa merger. We calculate the brightness temperature ratios
and use them in conjunction with a non-LTE radiative line transfer model. The
HCN and HCO+1-0, and CO3-2 emission do not occupy the same structures as the
less dense gas associated with the lower-J CO emission. The only emission from
dense gas is detected in a 200pc region within the "Eye of the Medusa". No HCN
or HCO+ is detected for the extended starburst. The CO3-2/2-1 brightness
temperature ratio inside "the Eye" is ~2.5 - the highest ratio found so far.
The line ratios reveal an extreme, fragmented molecular cloud population inside
"the Eye" with large temperatures (>300K) and high gas densities (>10^4 cm^-3).
"The Eye" is found at an interface between a large-scale minor axis inflow and
the Medusa central region. The extreme conditions inside "the Eye" may be the
result of the radiative and mechanical feedback from a deeply embedded, young,
massive super star cluster, formed due to the gas pile-up at the intersection.
Alternatively, shocks from the inflowing gas may be strong enough to shock and
fragment the gas. For both scenarios, however, it appears that the HCN and HCO+
dense gas tracers are not probing star formation, but instead a post-starburst
and/or shocked ISM that is too hot and fragmented to form new stars. Thus,
caution is advised in linking the detection of emission from dense gas tracers
to evidence of ongoing or imminent star formation.Comment: 10 pages, 5 figures, 2 tables, accepted for publication in A&
- …
