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Those of us who have had the pleasure of learning or teaching from Ed Purcell’s classic book

on electricity and magnetism [1] cannot forget the evocative figure in chapter 5 illustrating

how a pulse of electromagnetic radiation emerges from a kink in the field of a charge that

starts and stops. In this note, we suggest that a similar picture may yield a useful starting

point for a description of very high energy collisions between hadrons.

The idea is a simple one. At a collider, colorless incoming particles (whether leptons

or hadrons) interact in a very small space-time region and colored constituents emerge

at high energies in various directions. This is quite analogous to a situation in classical

electrodynamics in which high speed charged particles emerge suddenly at a point from

an initially neutral distribution of charges. In classical electrodynamics, we know what

happens and how to calculate it. A “light-shell” of electromagnetic radiation is produced

at the collision event and expands at the speed of light.1 Outside the light-shell, there are

no fields. Inside the light-shell the electric and magnetic fields of the produced charged

particles match continuously (though with Purcell’s kink) onto the ~E and ~B fields on the

light-shell. These are “transverse” — tangent to the shell and perpendicular to its direction

of motion.

What we are interested in for the analogy to very high energy hadronic collisions is

the situation in which the produced charged particles have very high energy and move

essentially at the speed of light, thus keeping up with the light-shell of radiation produced

in the collision. We will consider the extreme (and of course unrealistic) limit in which

the collision occurs instantaneously and with infinite energy so the charged particles move

at the speed of light from an initial space-time point and the light-shell is infinitly thin.

In this limit, not only are there no electric and magnetic fields outside the light-shell, but

there are also none inside the light-shell. All of the physics resides on the thin spherical

light-shell expanding at the speed of light.

We believe that a similar picture should apply for hadronic collisions at very high

energies, for a very short time after the collision. In this case, the initial collision involves

hard QCD processes taking place at energies large compared to the QCD scale. This

produces very high energy colored particles that fly apart at the speed of light and these

particles, along with the color electric and magnetic fields they produce will be confined

to an expanding light-shell, just as in the case of electromagnetism. We hope this picture

may be useful to describe the physics for the range of times between the very short time

scale of the initial collision and the “long” time scale of 1/ΛQCD.

In this paper, we flesh out this idea by looking at classical color fields in the appropriate

limit. We will argue that the classical color electric fields on the light-shell can be related

to a non-linear σ-model on a static two dimensional sphere with the Goldstone bosons

playing the role of the potential field and with specific symmetry breaking related to the

color charges of the high energy particles producing the fields. We will further argue that

the quantum mechanical description of these light-shell fields likely exhibits asymptotic

freedom with a coupling g(r) depending on the radius of the light-shell, with [2]

1

g(r)2
∝ log

(
1

rΛQCD

)
(1)

1The light-shell is thus a constant t slice of the light cone of the initial space-time event.
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for r � 1/ΛQCD. As the light-shell expands, the QCD interactions become more and more

important until we reach a radius of the order of the QCD scale, at which point perturbation

theory breaks down. We hope that this connection with the non-linear σ-model will be

another useful result of this work. Field theorists have long studied the analogies between

non-Abelian gauge theories in 3 + 1 dimensions and non-linear σ-models in 2 dimension,

making use of some the powerful tools available in the smaller number of dimensions (see

for example, [3]). We argue that this is not just an analogy. The non-linear σ-model IS

QCD in an appropriate limit. We hope that eventually, this will allow some of the magic

of 2D field theories to be brought to bear on the physics of jets in high energy collisions.

There have also been some interesting works in related directions. In [4], a simplified

effective theory for QCD is derived in the high-energy limit. While this effective theory

is still (3 + 1)-dimensional, its interactions are described, to leading order, in terms of a

2-dimensional σ-model on the transverse plane. Another interesting paper is [5], in which

the classical equation for the gluon field is solved for the case in which the source is a delta

function along the light-cone in the z direction. This calculation has some resemblance

with part of what we show in this note, except that we take the source to be a distribution

of charges moving spherically outward from the origin along the t = r light-shell instead

of a delta function along a specific direction. Additionally, some of the recent work on

assymptotic gauge symmetries has been exploring related themes involving the null sphere

at infinity [6–10].

In the case of classical E&M, the light-shell picture can be verified directly by solving

Maxwell’s equations. In this case the fields on the light-shell are static free fields (and of

course there is no asymptotic freedom). Specifically, consider charges qi satisfying
∑

i qi
starting at the origin at t = 0 and travelling at the speed of light in the n̂i directions.

It is possible to show that the potentials (after an appropriate gauge transformation) are

given by

A0 (t, ~r ) = φ (t, ~r ) = −
∑
i

qi δ(t− r) log (1− n̂i · r̂) (2)

and

~A (t, ~r ) = r̂ φ (t, ~r ) (3)

which are determined by the single function φ. Note that these potentials satisfy the gauge

condition

vµA
µ = 0 (4)

where

v0 = 1 and ~v = r̂ (5)

We call this the light-shell gauge (LSG) condition and it is an important part of our

quantum effective field theory on the light-shell which we introduce in the simplified zero

flavor setting of scalar QED in [11]. We give the calculation of the photon propagator

in light-shell gauge in [12] and discuss radiative corrections which reproduce the familiar

double log structure of the full theory in [11, 13].
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It is straightforward to calculate the electric and magnetic fields from the potentials (2)

and (3). We find that they are both parallel to the surface of the t = r and are given by

~E (t, ~r ) = −
∑
i

qi r̂ × (r̂ × n̂i) δ(t− r)
1

r − n̂i · ~r
(6)

~B (t, ~r ) =
∑
i

qi r̂ × n̂i δ(t− r)
1

r − n̂i · ~r
(7)

The non-Abelian case is more complicated, and it is not obvious how to write down

and solve the relevant equations directly. Here we will adopt a less direct route by assuming

a simple form for the gauge fields and imposing the physics of the collision. Specifically,

we will start by assuming that the gauge fields are zero outside the t = r sphere. We will

then go on to construct the field strengths Fµνa , and impose the following two conditions:

1. In the extreme relativistic limit, we expect no energy/momentum density inside the

light-shell. Thus the field strengths must vanish for r < t, and lie entirely on the

sphere.

2. The fields satisfy the non-abelian version of Maxwell’s equations, which tell us how

the charges on the light-shell produce the fields:

DνFµν = 4πJ µ (8)

where J µ is a color current density.

For implementing this plan, we are ultimately interested in color gauge fields of the form

Aµa(t, ~r ) = ξµa (t, ~r ) θ(t− r) (9)

which drop to zero discontinuously at the light-shell. When we differentiate these gauge

fields, we will find field strengths proportional to δ(t− r) — that is to say confined to the

light-shell. The basic idea is then to use (9) to construct the field strengths and see what

the dynamics of classical QCD tells us about the field strengths on the light-shell.

The form (9) is simple and appealing, and in the Abelian case, it is actually good

enough to reproduce the results of a direct calculation using retarded potentials. However,

as we will see, to understand the non-Abelian equations of motion, it is important to

think about getting to this singular situation as a limit of smoother gauge fields. We

want to understand when and how our results depend on the details of how we go to the

discontinuous limit. So we will think about obtaining (9) as a limit of smooth gauge fields,

Aµa(ε, t, ~r ), such that

lim
ε→0
Aµa(ε, t, ~r ) = ξµa (t, ~r ) θ(t− r) (10)

To construct the field strengths, we will need derivatives of this as well as products of

more than one such field with different non-abelian group indices. For the derivatives, we

will use

∂µθ(t− r) = vµδ(t− r) (11)
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with vµ defined in (5). This gives the relation

lim
ε→0

∂νAµa(ε, t, ~r ) = θ(t− r) ∂νξµa (t, ~r ) + δ(t− r) vν ξµa (t, ~r ) (12)

For a product of two such fields without derivatives, we can write

lim
ε→0
Aµa(ε, t, ~r )Aνb (ε, t, ~r ) = ξµa (t, ~r ) ξνb (t, ~r ) θ(t− r) (13)

In the field strength, the relations (12) and (13) are all we need, and we find for ε→ 0

Fµνa = ∂µAνa − ∂νAµa + fabcAµbA
ν
c (14)

→ δ(t− r) (vµξνa − vνξµa ) + θ(t− r)
(
∂µξνa − ∂νξµa + fabcξ

µ
b ξ

ν
c

)
(15)

Note that we have normalized the gauge fields to behave simply under the non-Abelian

gauge invariance, so that under a gauge transformation (Ta = λa/2 where the λa are the

Gell-Mann matrices)

Aµ = AµaTa → UAµU † − iU∂µU † (16)

We now apply the 1st of the two conditions we listed above (namely that the field

strengths vanish inside the sphere). This means that in equation (15), the coefficient of

the theta functions must be zero:

∂µξνa − ∂νξµa + fabcξ
µ
b ξ

ν
c = 0 (17)

We then have field strengths only on the light-shell

Fµνa → Fµνa = δ(t− r) (vµξνa − vνξµa ) (18)

We now apply to this field strength the second condition, namely, that the fields

satisfy the non-abelian Maxwell’s equations) (8). While doing so, we will also get some

terms containing derivatives of delta functions, and will assume that these must vanish.

On the left hand side of (8), we encounter two interesting things. In color components,

it can be divided into four terms as follows.

∂ν (∂µAνa − ∂νAµa) + ∂ν
(
fabcAµbA

ν
c

)
+ fadeAdν (∂µAνe − ∂νAµe ) + fadeAdν

(
febcAµbA

ν
c

)
(19)

The ε→ 0 limits of the second and fourth terms in (19) are straightforward, respectively

∂ν
(
θ(t− r) fabcξµb ξ

ν
c

)
(20)

θ(t− r) fadeξdν
(
febcξ

µ
b ξ

ν
c

)
(21)

The first term can be written as a sum of three terms:

∂0 (δ(t− r) vν (vµξνa − vνξµa )) (22)

+δ(t− r) (v0∂ν − ∂0vν) (vµξνa − vνξµa ) (23)

+∂ν (θ(t− r) (∂µξνa − ∂νξµa )) (24)
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The last of these, (24), combines with (20) to give zero by virtue of (17). The first must

vanish if we are to avoid derivatives of δ-functions, which implies (because vµv
µ = 0)

δ(t− r) vµξµ = 0 (25)

Comparing with (18), you can see that this is the condition that the color electric field on

the light-shell is tangent to the light-shell, perpendicular to the direction of motion of the

light-shell, r̂. We expected this on physical grounds, and we now see that it is necessary

for the consistency of the picture. Comparing (25) with (10) also tells us that the gauge

field in the limit limε→0Aµa(ε, t, ~r ) satisfies the light-shell gauge at least on the sphere.

Finally, we consider the third term in (19). This term is problematic because it is

not determined by the limiting value of Aµ. The total derivative of a product of Aµs is

determined,(
Aνb (ε, t, ~r ) ∂λAµa(ε, t, ~r ) +Aµa(ε, t, ~r ) ∂λAνb (ε, t, ~r )

)
→ ∂λ (θ(t− r) ξµa (t, ~r )ξνb (t, ~r )) (26)

However, for the product of one A with the derivative of another, the limit depends on the

details of their shapes. In general we can write

Aµa(ε, t, ~r ) ∂λAνb (ε, t, ~r )→

θ(t− r) ξµa (t, ~r ) ∂λξνb (t, ~r ) + δ(t− r)
(

1

2
vλ ξµa (t, ~r ) ξνb (t, ~r ) + κµλνab (t, ~r )

) (27)

where

κµλνab (t, ~r ) = −κνλµba (t, ~r ) (28)

The κ term is the most general thing we can write down consistent with (26).2 Using (27),

we get for the third term in (19)

θ(t− r) fabc ξbν (∂µξνc − ∂νξµc ) + δ(t− r)κµa (29)

where

κµa = fabc gλν

(
κλµνbc − κ

λνµ
bc

)
(30)

and we have used (25) and the antisymmetry of fabc to set

δ(t− r) 1

2
fabc ξbν (vµξνc − vνξµc ) = 0 (31)

We will see later that something crucial happened in (29). The explicit non-linear depen-

dence on ξ in (31) goes away, but the κ term remembers the non-linear form of the field

equations. We will argue later that this extra κ term is necessary for the consistency of

the picture. Putting all this together, again using (17), Maxwell’s equations become

δ(t− r)
[
(v0∂ν − vν∂0) (vµξν − vνξµ) + κµa − 4πσa v

µ
]

= 0 (32)

2Note that this ambiguity only appears in the non-Abelian theory because of the non-linearity of the

equations of motion. There is no κ in E&M.
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We are interested in what these equations tell us about the fields on the light-shell, so

we will eliminate t and evaluate (whenever we can) the fields for t = r. Look for example

at µ = 0 in (32).

δ(t− r)
[(
~∇+ r̂∂0

)
·
(
~ξa(t, ~r )− r̂ξ0

a(t, ~r )
)

+ κ0
a − 4πσa

]
= 0 (33)

Define “light-shell fields” which are functions only of ~r by setting t = r to go onto the

light-shell:

~ea(~r ) ≡
(
~ξa(t, ~r )− r̂ ξ0

a(t, ~r )
)∣∣∣
t=r

(34)

Then because of (25), these fields are transverse,

r̂ · ~ea(~r ) = 0 (35)

In terms of ~e, (33) becomes

δ(t− r)
(
~∇ · ~ea(~r )− 4πσa(~r ) + κ0

a(~r )
)

= 0 (36)

Notice that the derivatives of ξ with respect to ~r and t have conspired to give derivatives

of the light-shell fields just with respect to ~r. Because (36) is true for all t, we must have

~∇ · ~ea(~r ) = 4πσa(~r )− κ0
a(~r ) (37)

Thus ~ea is a kind of electric field on the light-shell, but (37) is true in a static 3D space.3

For the space components of (32), a similar manipulation gives

~∇× (r̂ × ~ea ) = 4πσa r̂ − ~κa (38)

This is very reasonable. It says that the curl of the magnetic field on the light-shell is

related to the current and ~κ. We can combine (38) and (37), to obtain

r̂ ×
(
~∇× ~ea

)
=
(
r̂ κ0

a − ~κa
)

(39)

We will see shortly that this gives a constraint on ~κ.

In electromagnetism, in spite of the singularity of (18), we can give direct physical

meaning to the light-shell fields. ~e is the impulse per unit charge produced by the light-

shell as it passes by a stationary infinitesimal test charge. This is finite and independent

of the detailed shape of the field as the shell width goes to zero. It is not so obvious that

this concept makes sense in the non-Abelian case, because we cannot make an arbitrarily

small test charge. It appears that to construct gauge invariant quantities that are finite in

the ε→ 0 limit, we have to take ratios. For example the surface energy density on the light

shell goes to ∞ as ε→ 0, but ratios of energy densities at different points should be finite.

3You might wonder what becomes of the color gauge invariance, since it looks like the gauge field ξ is

simply turning into the gauge invariant field strength, ~ea. The answer is that gauge transformations that

preserve the form (9) of Aµ change the ξs inside but do not change the light-shell fields, ~ea except for global

color rotations, which of course remain.
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Now let’s look in more detail at the vanishing of the field in the interior and see what

part of this we can write in terms of light-shell fields. We know from the vanishing of the

field for r < t that

∇jξka −∇kξja = fabcξ
j
bξ
k
c and ∂0ξja +∇jξ0

a = −fabcξ0
b ξ
j
c (40)

We can combine these into light-shell fields as follows:

(∇j + r̂j∂0)
(
ξka − r̂k ξ0

a

)
−(∇k+ r̂k∂0)

(
ξja − r̂j ξ0

a

)
= fabc

(
ξjb − r̂

j ξ0
b

)
×
(
ξkc − r̂k ξ0

c

)
(41)

so we can use (34) and set t = r and conclude that the 3D theory of ~ea satisfies

∇jeka −∇keja = fabce
j
be
k
c or ~∇× ~ea =

1

2
fabc ~eb × ~ec (42)

(42), all by itself, has a number of consequences. Because the ~eas are perpendicular to r̂,

their cross product must be in the r̂ direction. Thus

r̂ ×
(
~∇× ~ea

)
= 0 (43)

But if we take the gradient of (35) and simplify, we get

r̂ ×
(
~∇× ~ea

)
= −1

r

(
1 + ~r · ~∇

)
~ea (44)

And on comparing this with (43), we see that ~ea scales trivially,(
~r · ~∇

)
~ea = −~ea (45)

Thus ~ea is just 1/r times a vector function of r̂. Again, this follows directly from (42)

which in turn follows from the vanishing of the fields inside the light-shell. (43) together

with (39) also implies

κµa = vµκa (46)

for some scalar function κa, so that like the current, κµa ∝ vµ. Thus in the limit, all

the information from the non-Abelian Maxwell’s equations is contained in (46) and the

following relations:

~∇× ~ea =
1

2
fabc ~eb × ~ec r̂ · ~ea = 0

(
~r · ~∇

)
~ea = −~ea (47)

~∇ · ~ea = 4πσa − κa ≡ 4πσ̃a (48)

Notice that the effective charge density 4πσ̃a must scale like 1/r2 (consistent with charge

conservation).

We can solve (47) for the ~ea fields as follows:

~eaTa = −i U(r̂)†~∇U(r̂) (49)

where U †U = I is a special unitary matrix. Now trivial scaling and transversality are

automatic because U depends only on r̂. (As an aside, (48) and (49) closely resemble

equations 11 and 16, respectively, in [5].)
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Because of (45), our picture is classically scale invariant and we could write the classical

theory as a purely two dimensional theory on the light-shell, and simply choose r = 1.

Physically, however, it is sometimes convenient to think about the theory as we actually

use it, in the full three dimensional space, but with the fields living on an expanding

light-shell of radius r = t.

Having dealt with (47), we now want to find a Lagrangian that gives (48) as the equa-

tion of motion so that we can eventually do quantum mechanics. We have now eliminated

time and are in purely Euclidean space, so this is just the energy. We would expect a

contribution proportional to Tr(~e 2), which in terms of U can be written as (where B is

some geometrical constant that we do not know how to calculate at this point, and g is

the dimensionless coupling constant)

B

g2
Tr
(
~∇U(r̂)† · ~∇U(r̂)

)
(50)

This is the Lagrangian for a non-linear σ-model on the light-shell and the U fields (which

in some sense are the potentials associated with the electric fields) are Goldstone boson

fields associated with the breaking of an SU(3)L × SU(3)R, U → LUR† down to the

diagonal SU(3), U → V UV †. The electric fields ~ea are Noether currents associated with

the SU(3)R symmetry, so if (50) were the whole story, ~ea would be conserved, in agreement

with (48) without sources, for σ̃ = 0. This is a renormalizable theory in 2D, and Polyakov

showed long ago that the coupling g exhibits asymptotic freedom [2]. What happens in this

particular geometrical situation is simple and interesting. Because the fields live on the

light-shell of radius r, the momenta in the theory are actually angular momenta divided by

r. The ` = 0 mode is absent because it gives no contribution to ~e if the total net charge on

the light-shell is zero. The momenta are bounded away from zero and quantized in units

of 1/r. The infrared divergence that one would expect in a flat 2D theory is cut off at r.

Because all the momenta scale with 1/r, it is appropriate to choose the renormalization

scale to scale with 1/r, so the coupling depends on the radius.

Up to this point, we believe that our analysis is quite robust. In the appropriate limit,

we can describe the physics in terms of light-shell fields, and the condition that the field

strengths vanish inside the light shell implies quite directly that these fields are described

by a non-linear σ-model. We are on shakier ground from here on, where we discuss the

dependence on the charges and currents of the high energy particles that are producing

the fields. Here κ gets involved, and in our indirect approach to the limit, we do not know

exactly what κ is. But we believe that a non-zero κ is necessary and have a guess for its

form, and we will now discuss the reasons for the belief and the guess. Suppose first that

κ = 0. Then the equation of motion for U would be (from (48)),

~∇ ·
(
−i U †~∇U

)
= 4πσ (51)

where the right hand side is independent of U . However, it is not possible to add to

the Lagrangian (50) a term F (U) that gives this equation of motion, because Noether’s

theorem requires that to get (51) from an infinitesimal symmetry transformation,

δU = U iδζ (52)
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we need

δF = 4πTr(σδζ) (53)

To see why this is a problem, write U in terms of unconstrained octet components, U =

eiΠaTa so (52) is

δζ = OaδΠa where Oa ≡ −iU † δU

δΠa
(54)

Thus we want
δF

δΠa
=
B

g2
4πσ Oa (55)

But
δOa
δΠb
− δOb
δΠa

= −i
[
Oa , Ob

]
6= 0 (56)

which means that (55) is not consistent. In the presence of κ, there are additional terms

in δF coming from the dependence of κ (and thus σ̃) on the Πs. One simple possibility is

4πσ̃ = 4πσ − κ = 2π(σU + U †σ) (57)

which would emerge in the equation of motion from the Lagrangian

B

g2
Tr
(
~∇U † · ~∇U − 2πi(σU − U †σ)

)
(58)

This our guess for the structure of the effective theory on the light-shell.

We believe that this analysis makes a very plausible case that very high energy collisions

involving colored particles can be described by a light-shell effective field theory in which

the dynamical fields are the Goldstone bosons of a non-linear σ-model on the light-shell at

t = r. To go further, we must go beyond our indirect arguments and see how to construct

the light-shell effective theory directly from the underlying QCD theory. Then we should

be able to do the perturbative matching onto the light-shell effective theory from the QCD

physics of the original high-energy collision and better understand the physical meaning of

our light-shell fields. Efforts in this direction are continuing.
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