3,388 research outputs found
Entropic Bell inequalities
We derive entropic Bell inequalities from considering entropy Venn diagrams. These entropic inequalities, akin to the Braunstein-Caves inequalities, are violated for a quantum-mechanical Einstein-Podolsky-Rosen pair, which implies that the conditional entropies of Bell variables must be negative in this case. This suggests that the satisfaction of entropic Bell inequalities is equivalent to the non-negativity of conditional entropies as a necessary condition for separability
On the von Neumann capacity of noisy quantum channels
We discuss the capacity of quantum channels for information transmission and
storage. Quantum channels have dual uses: they can be used to transmit known
quantum states which code for classical information, and they can be used in a
purely quantum manner, for transmitting or storing quantum entanglement. We
propose here a definition of the von Neumann capacity of quantum channels,
which is a quantum mechanical extension of the Shannon capacity and reverts to
it in the classical limit. As such, the von Neumann capacity assumes the role
of a classical or quantum capacity depending on the usage of the channel. In
analogy to the classical construction, this capacity is defined as the maximum
von Neumann mutual entropy processed by the channel, a measure which reduces to
the capacity for classical information transmission through quantum channels
(the "Kholevo capacity") when known quantum states are sent. The quantum mutual
entropy fulfills all basic requirements for a measure of information, and
observes quantum data-processing inequalities. We also derive a quantum Fano
inequality relating the quantum loss of the channel to the fidelity of the
quantum code. The quantities introduced are calculated explicitly for the
quantum "depolarizing" channel. The von Neumann capacity is interpreted within
the context of superdense coding, and an "extended" Hamming bound is derived
that is consistent with that capacity.Comment: 15 pages RevTeX with psfig, 13 figures. Revised interpretation of
capacity, added section, changed titl
Prolegomena to a non-equilibrium quantum statistical mechanics
We suggest that the framework of quantum information theory, which has been
developing rapidly in recent years due to intense activity in quantum
computation and quantum communication, is a reasonable starting point to study
non-equilibrium quantum statistical phenomena. As an application, we discuss
the non-equilibrium quantum thermodynamics of black hole formation and
evaporation.Comment: 20 pages, LaTeX with elsart.cls, 8 postscript figures. Special issue
on quantum computation of Chaos, Solitons, and Fractal
Photometric redshifts as a tool to study the Coma cluster galaxy populations
We investigate the Coma cluster galaxy luminosity function (GLF) at faint
magnitudes, in particular in the u* band by applying photometric redshift
techniques applied to deep u*, B, V, R, I images covering a region of ~1deg2 (R
24). Global and local GLFs in the B, V, R and I bands obtained with photometric
redshift selection are consistent with our previous results based on a
statistical background subtraction.
In the area covered only by the u* image, the GLF was also derived after
applying a statistical background subtraction. The GLF in the u* band shows an
increase of the faint end slope towards the outer regions of the cluster (from
alpha~1 in the cluster center to alpha~2 in the cluster periphery). This could
be explained assuming a short burst of star formation in these galaxies when
entering the cluster.
The analysis of the multicolor type spatial distribution reveals that late
type galaxies are distributed in clumps in the cluster outskirts, where X-ray
substructures are also detected and where the GLF in the u* band is steeper.Comment: 14 pages, 2 figures in jpeg format, accepted in A&
On the nature of faint Low Surface Brightness galaxies in the Coma cluster
This project is the continuation of our study of faint Low Surface Brightness
Galaxies (fLSBs) in one of the densest nearby galaxy regions known, the Coma
cluster. Our goal is to improve our understanding of the nature of these
objects by comparing the broad band spectral energy distribution with
population synthesis models. The data were obtained with the MEGACAM and CFH12K
cameras at the CFHT. We used the resulting photometry in 5 broad band filters
(u*, B, V, R, and I), that included new u*-band data, to fit spectral models.
With these spectral fits we inferred a cluster membership criterium, as well as
the ages, dust extinctions, and photometric types of these fLSBs. We show that
about half of the Coma cluster fLSBs have a spectral energy distribution well
represented in our template library while the other half present a flux deficit
at ultraviolet wavelengths. Among the well represented, ~80% are probably part
of the Coma cluster based on their spectral energy distribution. They are
relatively young (younger than 2.3 Gyrs for 90% of the sample) non-starburst
objects. The later their type, the younger fLSBs are. A significant part of the
fLSBs are quite dusty objects. fLSBs are low stellar mass objects (the later
their type the less massive they are), with stellar masses comparable to
globular clusters for the faintest ones. Their characteristics are correlated
with infall directions, confirming the disruptive origin for part of them.Comment: Accepted for publication in A&A, 10 pages, 10 figure
Reduction criterion for separability
We introduce a separability criterion based on the positive map Î:Ïâ(Tr Ï)-Ï, where Ï is a trace-class Hermitian operator. Any separable state is mapped by the tensor product of Î and the identity into a non-negative operator, which provides a simple necessary condition for separability. This condition is generally not sufficient because it is vulnerable to the dilution of entanglement. In the special case where one subsystem is a quantum bit, Î reduces to time reversal, so that this separability condition is equivalent to partial transposition. It is therefore also sufficient for 2Ă2 and 2Ă3 systems. Finally, a simple connection between this map for two qubits and complex conjugation in the âmagicâ basis [Phys. Rev. Lett. 78, 5022 (1997)] is displayed
Optical simulation of quantum logic
A constructive method for simulating small-scale quantum circuits by use of linear optical devices is presented. It relies on the representation of several quantum bits by a single photon, and on the implementation of universal quantum gates using simple optical components (beam splitters, phase shifters, etc.). This suggests that the optical realization of small quantum networks with present-day quantum optics technology is a reasonable goal. This technique could be useful for demonstrating basic concepts of simple quantum algorithms or error-correction schemes. The optical analog of a nontrivial three-bit quantum circuit is presented as an illustration
- âŠ