213 research outputs found

    EL CURÍCULUM POR COMPETENCIAS Y SU IMPACTO EN LA FORMACIÓN DEL PROFESIONAL DE RECURSOS HUMANOS EN LA FACULTAD DE ADMINISTRACIÓN DE EMPRESAS Y CONTABILIDAD

    Get PDF
    Within the framework of the research, the Curriculum y competence and its Impact on the Training of the Human Resources Professional in the Faculty of Business Administration and Accounting, we collect the results through this Scientific Article, which research question asks the following: ¿Has the curricular Design for Competence provided efficiency and quality in the training of the Human Resources professional? Regarding the general objective of the research carried out, he made reference to: Determining if the paradigm shift to a curricular design by competence, improved the efficiency and quality in training of the Human Resources professional. This investigation was carried out through the application of a survey to the graduates of the career of graduates in Human Resources, of the last five (5) years. Among the main discoveries, it was found that the curricular design by competence contributes, according to the respondents, efficiency and quality in the training of the Human Resources professional. Likewise, the graduates of the Faculty of Business Administration and accounting consider that the preparation they have received is in accordance with the demands of the market, its changes and transformations, including the post-pandemic situation.Dentro del marco de la Investigación, El Currículum por Competencia y su Impacto en la Formación del Profesional de recursos Humanos en la Facultad de Administración de Empresas y Contabilidad, recogemos los resultados mediante el presente Artículo Científico, cuya pregunta de investigación se plantea lo siguiente: ¿Ha brindado el Diseño Curricular por Competencia eficiencia y calidad en la formación del profesional de recursos Humanos? En cuanto al objetivo general de la investigación llevada a cabo hizo referencia a: determinar si el cambio de paradigma a un diseño curricular por competencias mejoró la eficiencia y la calidad en la formación del profesional de Recursos Humanos. Esta investigación se realizó mediante la aplicación de una encuesta a los egresados de la carrera de licenciados en Recursos humanos, de los últimos cinco (5) años. Entre los principales descubrimientos se encontró que el diseño curricular por competencia aporta, según los encuestados, eficiencia y calidad en la formación del profesional de Recursos Humanos. Así mismo, los egresados de la Facultad de Administración de Empresas y Contabilidad consideran que la preparación que han recibido se encuentra acorde con las exigencias del mercado, sus cambios y transformaciones, incluyendo la situación post pandemia

    Cigarettes and alcohol in relation to colorectal cancer: the Singapore Chinese Health Study

    Get PDF
    The relations were examined between colorectal cancer and cigarette smoking and alcohol consumption within the Singapore Chinese Health Study, a population-based, prospective cohort of 63 257 middle-aged and older Chinese men and women enrolled between 1993 and 1998, from whom baseline data on cigarette smoking and alcohol consumption were collected through in-person interviews. By 31 December 2004, 845 cohort participants had developed colorectal cancer (516 colon cancer, 329 rectal cancer). Compared with nondrinkers, subjects who drank seven or more alcoholic drinks per week had a statistically significant, 72% increase in risk of colorectal cancer hazard ratio (HR)=1.72; 95% confidence interval (CI)=1.33–2.22). Cigarette smoking was associated with an increased risk of rectal cancer only. Compared with nonsmokers, HRs (95% CIs) for rectal cancer were 1.43 (1.10–1.87) for light smokers and 2.64 (1.77–3.96) for heavy smokers. Our data indicate that cigarette smoking and alcohol use interact in the Chinese population in an additive manner in affecting risk of rectal cancer, thus suggesting that these two exposures may share a common etiologic pathway in rectal carcinogenesis

    Reciprocal Tripartite Interactions between the Aedes aegypti Midgut Microbiota, Innate Immune System and Dengue Virus Influences Vector Competence

    Get PDF
    Dengue virus is one of the most important arboviral pathogens and the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. It is transmitted between humans by the mosquitoes Aedes aegypti and Aedes albopictus, and at least 2.5 billion people are at daily risk of infection. During their lifecycle, mosquitoes are exposed to a variety of microbes, some of which are needed for their successful development into adulthood. However, recent studies have suggested that the adult mosquito's midgut microflora is critical in influencing the transmission of human pathogens. In this study we assessed the reciprocal interactions between the mosquito's midgut microbiota and dengue virus infection that are, to a large extent, mediated by the mosquito's innate immune system. We observed a marked decrease in susceptibility to dengue virus infection when mosquitoes harbored certain field-derived bacterial isolates in their midgut. Transcript abundance analysis of selected antimicrobial peptide genes suggested that the mosquito's microbiota elicits a basal immune activity that appears to act against dengue virus infection. Conversely, the elicitation of the mosquito immune response by dengue virus infection itself influences the microbial load of the mosquito midgut. In sum, we show that the mosquito's microbiota influences dengue virus infection of the mosquito, which in turn activates its antibacterial responses

    Push-me-pull-you: how microtubules organize the cell interior

    Get PDF
    Dynamic organization of the cell interior, which is crucial for cell function, largely depends on the microtubule cytoskeleton. Microtubules move and position organelles by pushing, pulling, or sliding. Pushing forces can be generated by microtubule polymerization, whereas pulling typically involves microtubule depolymerization or molecular motors, or both. Sliding between a microtubule and another microtubule, an organelle, or the cell cortex is also powered by molecular motors. Although numerous examples of microtubule-based pushing and pulling in living cells have been observed, it is not clear why different cell types and processes employ different mechanisms. This review introduces a classification of microtubule-based positioning strategies and discusses the efficacy of pushing and pulling. The positioning mechanisms based on microtubule pushing are efficient for movements over small distances, and for centering of organelles in symmetric geometries. Mechanisms based on pulling, on the other hand, are typically more elaborate, but are necessary when the distances to be covered by the organelles are large, and when the geometry is asymmetric and complex. Thus, taking into account cell geometry and the length scale of the movements helps to identify general principles of the intracellular layout based on microtubule forces

    Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC

    Get PDF
    The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 × 6 × 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 103 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    Get PDF
    Measurements of electrons from νe interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectra is derived, and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons
    corecore