174 research outputs found

    Online interventions to prevent mental health problems implemented in school settings: the perspectives from key stakeholders in Austria and Spain

    Get PDF
    Background: Schools are key settings for delivering mental illness prevention in adolescents. Data on stakeholders’ attitudes and factors relevant for the implementation of Internet-based prevention programmes are scarce. Methods: Stakeholders in the school setting from Austria and Spain were consulted. Potential facilitators (e.g. teachers and school psychologists) completed an online questionnaire (N=50), policy makers (e.g. representatives of the ministry of education and health professional associations) participated in semi-structured interviews (N=9) and pupils (N=29, 14–19 years) participated in focus groups. Thematic analysis was used to identify experiences with, attitudes and needs towards Internet-based prevention programmes, underserved groups, as well as barriers and facilitators for reach, adoption, implementation and maintenance. Results: Experiences with Internet-based prevention programmes were low across all stakeholder groups. Better reach of the target groups was seen as main advantage whereas lack of personal contact, privacy concerns, risk for misuse and potential stigmatization when implemented during school hours were regarded as disadvantages. Relevant needs towards Internet-based programmes involved attributes of the development process, general requirements for safety and performance, presentation of content, media/tools and contact options of online programmes. Positive attitudes of school staff, low effort for schools and compatibility to schools’ curriculum were seen as key factors for successful adoption and implementation. A sound implementation of the programme in the school routine and continued improvement could facilitate maintenance of online prevention initiatives in schools. Conclusions: Attitudes towards Internet-based mental illness prevention programmes in school settings are positive across all stakeholder groups. However, especially safety concerns have to be considered

    Harmonic Sums and Mellin Transforms up to two-loop Order

    Get PDF
    A systematic study is performed on the finite harmonic sums up to level four. These sums form the general basis for the Mellin transforms of all individual functions fi(x)f_i(x) of the momentum fraction xx emerging in the quantities of massless QED and QCD up to two--loop order, as the unpolarized and polarized splitting functions, coefficient functions, and hard scattering cross sections for space and time-like momentum transfer. The finite harmonic sums are calculated explicitly in the linear representation. Algebraic relations connecting these sums are derived to obtain representations based on a reduced set of basic functions. The Mellin transforms of all the corresponding Nielsen functions are calculated.Comment: 44 pages Latex, contract number adde

    Combination of (M)DSC and surface analysis to study the phase behaviour and drug distribution of ternary solid dispersions

    Get PDF
    Purpose: Miscibility of the different compounds that make up a solid dispersion based formulation play a crucial role in the drug release profile and physical stability of the solid dispersion as it defines the phase behaviour of the dispersion. The standard technique to obtain information on phase behaviour of a sample is (modulated) differential scanning calorimetry ((M)DSC). However, for ternary mixtures (M)DSC alone is not sufficient to characterize their phase behaviour and to gain insight into the distribution of the active pharmaceutical ingredient (API) in a two-phased polymeric matrix. Methods: MDSC was combined with complementary surface analysis techniques, specifically time-of-flight secondary ion mass spectrometry (ToF-SIMS) and atomic force microscopy (AFM). Three spray-dried model formulations with varying API/PLGA/PVP ratios were analyzed. Results: The distribution of the API in the ternary solid dispersions depended on formulation parameters. The extent of API surface coverage and therefore the distribution of the API over both polymeric phases differed significantly for the three formulations. Conclusions: Combining (M)DSC and surface analysis rendered additional insights in the composition of mixed phases in complex systems, like ternary solid dispersions

    Competing Interactions in DNA Assembly on Graphene

    Get PDF
    We study the patterns that short strands of single-stranded DNA form on the top graphene surface of graphite. We find that the DNA assembles into two distinct patterns, small spherical particles and elongated networks. Known interaction models based on DNA-graphene binding, hydrophobic interactions, or models based on the purine/pyrimidine nature of the bases do not explain our observed crossover in pattern formation. We argue that the observed assembly behavior is caused by a crossover in the competition between base-base pi stacking and base-graphene pi stacking and we infer a critical crossover energy of eV. The experiments therefore provide a projective measurement of the base-base interaction strength

    Self-assembled amyloid fibrils with controllable conformational heterogeneity

    Get PDF
    Amyloid fibrils are a hallmark of neurodegenerative diseases and exhibit a conformational diversity that governs their pathological functions. Despite recent findings concerning the pathological role of their conformational diversity, the way in which the heterogeneous conformations of amyloid fibrils can be formed has remained elusive. Here, we show that microwave-assisted chemistry affects the self-assembly process of amyloid fibril formation, which results in their conformational heterogeneity. In particular, microwave-assisted chemistry allows for delicate control of the thermodynamics of the self-assembly process, which enabled us to tune the molecular structure of ??-lactoglobulin amyloid fibrils. The heterogeneous conformations of amyloid fibrils, which can be tuned with microwave-assisted chemistry, are attributed to the microwave-driven thermal energy affecting the electrostatic interaction during the self-assembly process. Our study demonstrates how microwave-assisted chemistry can be used to gain insight into the origin of conformational heterogeneity of amyloid fibrils as well as the design principles showing how the molecular structures of amyloid fibrils can be controlledopen0

    Nanomechanical properties of α-synuclein amyloid fibrils: a comparative study by nanoindentation, harmonic force microscopy, and Peakforce QNM

    Get PDF
    We report on the use of three different atomic force spectroscopy modalities to determine the nanomechanical properties of amyloid fibrils of the human α-synuclein protein. α-Synuclein forms fibrillar nanostructures of approximately 10 nm diameter and lengths ranging from 100 nm to several microns, which have been associated with Parkinson's disease. Atomic force microscopy (AFM) has been used to image the morphology of these protein fibrils deposited on a flat surface. For nanomechanical measurements, we used single-point nanoindentation, in which the AFM tip as the indenter is moved vertically to the fibril surface and back while the force is being recorded. We also used two recently developed AFM surface property mapping techniques: Harmonic force microscopy (HarmoniX) and Peakforce QNM. These modalities allow extraction of mechanical parameters of the surface with a lateral resolution and speed comparable to tapping-mode AFM imaging. Based on this phenomenological study, the elastic moduli of the α-synuclein fibrils determined using these three different modalities are within the range 1.3-2.1 GPa. We discuss the relative merits of these three methods for the determination of the elastic properties of protein fibrils, particularly considering the differences and difficulties of each method

    Nanospiral Formation by Droplet Drying: One Molecule at a Time

    Get PDF
    We have created nanospirals by self-assembly during droplet evaporation. The nanospirals, 60–70 nm in diameter, formed when solvent mixtures of methanol and m-cresol were used. In contrast, spin coating using only methanol as the solvent produced epitaxial films of stripe nanopatterns and using only m-cresol disordered structure. Due to the disparity in vapor pressure between the two solvents, droplets of m-cresol solution remaining on the substrate serve as templates for the self-assembly of carboxylic acid molecules, which in turn allows the visualization of solution droplet evaporation one molecule at a time
    corecore