32,733 research outputs found
Optically thick envelopes around ULXs powered by accreating neutron stars
Magnetized neutron stars power at least some ultra-luminous X-ray sources.
The accretion flow in these cases is interrupted at the magnetospheric radius
and then reaches the surface of a neutron star following magnetic field lines.
Accreting matter moving along magnetic field lines forms the accretion envelope
around the central object. We show that, in case of high mass accretion rates
the envelope becomes closed and optically
thick, which influences the dynamics of the accretion flow and the
observational manifestation of the neutron star hidden behind the envelope.
Particularly, the optically thick accretion envelope results in a multi-color
black-body spectrum originating from the magnetospheric surface. The spectrum
and photon energy flux vary with the viewing angle, which gives rise to
pulsations characterized by high pulsed fraction and typically smooth pulse
profiles. The reprocessing of radiation due to interaction with the envelope
leads to the disappearance of cyclotron scattering features from the spectrum.
We speculate that the super-orbital variability of ultra-luminous X-ray sources
powered by accreting neutron stars can be attributed to precession of the
neutron star due to interaction of magnetic dipole with the accretion disc.Comment: 8 pages, 6 figures, accepted for publication in MNRA
Magnetic Fields in Stellar Jets
Although several lines of evidence suggest that jets from young stars are
driven magnetically from accretion disks, existing observations of field
strengths in the bow shocks of these flows imply that magnetic fields play only
a minor role in the dynamics at these locations. To investigate this apparent
discrepancy we performed numerical simulations of expanding magnetized jets
with stochastically variable input velocities with the AstroBEAR MHD code.
Because the magnetic field B is proportional to the density n within
compression and rarefaction regions, the magnetic signal speed drops in
rarefactions and increases in the compressed areas of velocity-variable flows.
In contrast, B ~ n^0.5 for a steady-state conical flow with a toroidal field,
so the Alfven speed in that case is constant along the entire jet. The
simulations show that the combined effects of shocks, rarefactions, and
divergent flow cause magnetic fields to scale with density as an intermediate
power 1 > p > 0.5. Because p > 0.5, the Alfven speed in rarefactions decreases
on average as the jet propagates away from the star. This behavior is extremely
important to the flow dynamics because it means that a typical Alfven velocity
in the jet close to the star is significantly larger than it is in the
rarefactions ahead of bow shocks at larger distances, the one place where the
field is a measurable quantity. We find that the observed values of weak fields
at large distances are consistent with strong fields required to drive the
observed mass loss close to the star. For a typical stellar jet the crossover
point inside which velocity perturbations of 30 - 40 km/s no longer produce
shocks is ~ 300 AU from the source
Memory, space and time: Researching children's lives
This article discusses the research approach in 'Pathways through Childhood', a small qualitative study drawing on memories of childhood. The research explores how wider social arrangements and social change influence children's everyday lives.The article discusses the way that the concepts of social memory, space and time have been drawn on to access and analyse children's experiences, arguing that attention to the temporal and spatial complexity of childhood reveals less visible yet formative influences and connections. Children's everyday engagements involve connections between past and present time, between children, families, communities and nations, and between different places. Children carve out space and time for themselves from these complex relations. © The Author(s) 2010
Seasonal biodiversity and ecological studies on the epiphytic microalgae communities in polluted and unpolluted aquatic ecosystem at Assiut, Egypt
A qualitative and quantitative study on epiphytic microalgae was carried out seasonally from November 2015 to August 2016 to follow up their community structures on aquatic macrophytes related to some physico-chemical properties of two polluted and unpolluted water bodies at Assiut, Egypt. A total of 169 species related to 64 genera of epiphytic microalgae were recorded. The most dominant algal group was Bacillariophyceae (43.2%), followed by Chlorophyceae (34.91%), Cyanophyceae (20.71%) and Euglenophyceae (1.18%). The total number of epiphytic algae fluctuated between 11.1 × 104 ind.g-1 plant dry wt. on Phragmites australis in summer at Nazlet Abdellah (polluted site) and 10.02 × 107 ind.g-1 plant dry wt. on Myriophyllum spicatum in winter at El-Wasta (unpolluted site). Some epiphytic microalgae were dominant as Pseudanabaena limnetica, Calothrix braunii, Scenedesmus acutus, and Ulnaria ulna. Others were specific on certain macrophytes as Aphanocapsa thermalis and Ulothrix sp., which grow on Phragmites australis, while Synechocystis minuscula attached itself on Myriophyllum spicatum. Analysis of PERMANOVA showed that the most important factors that induced the variation in epiphytic microalgae were the temporal variation and host plant. Water temperature, pH, nitrate, chloride, phosphate and total dissolved salts were the highest abiotic factors correlated with the variation in composition of epiphytic microalgae
Bimetric gravity is cosmologically viable
Bimetric theory describes gravitational interactions in the presence of an
extra spin-2 field. Previous work has suggested that its cosmological solutions
are generically plagued by instabilities. We show that by taking the Planck
mass for the second metric, , to be small, these instabilities can be
pushed back to unobservably early times. In this limit, the theory approaches
general relativity with an effective cosmological constant which is,
remarkably, determined by the spin-2 interaction scale. This provides a
late-time expansion history which is extremely close to CDM, but with
a technically-natural value for the cosmological constant. We find should
be no larger than the electroweak scale in order for cosmological perturbations
to be stable by big-bang nucleosynthesis. We further show that in this limit
the helicity-0 mode is no longer strongly-coupled at low energy scales.Comment: 8+2 pages, 2 tables. Version published in PLB. Minor typo corrections
from v
Interaction driven metal-insulator transition in strained graphene
The question of whether electron-electron interactions can drive a metal to
insulator transition in graphene under realistic experimental conditions is
addressed. Using three representative methods to calculate the effective
long-range Coulomb interaction between -electrons in graphene and solving
for the ground state using quantum Monte Carlo methods, we argue that without
strain, graphene remains metallic and changing the substrate from SiO to
suspended samples hardly makes any difference. In contrast, applying a rather
large -- but experimentally realistic -- uniform and isotropic strain of about
seems to be a promising route to making graphene an antiferromagnetic
Mott insulator.Comment: Updated version: 6 pages, 3 figure
The role of electron-electron interactions in two-dimensional Dirac fermions
The role of electron-electron interactions on two-dimensional Dirac fermions
remains enigmatic. Using a combination of nonperturbative numerical and
analytical techniques that incorporate both the contact and long-range parts of
the Coulomb interaction, we identify the two previously discussed regimes: a
Gross-Neveu transition to a strongly correlated Mott insulator, and a
semi-metallic state with a logarithmically diverging Fermi velocity accurately
described by the random phase approximation. Most interestingly, experimental
realizations of Dirac fermions span the crossover between these two regimes
providing the physical mechanism that masks this velocity divergence. We
explain several long-standing mysteries including why the observed Fermi
velocity in graphene is consistently about 20 percent larger than the best
values calculated using ab initio and why graphene on different substrates show
different behavior.Comment: 11 pages, 4 figure
Quantum oscillations observed in graphene at microwave frequencies
We have measured the microwave conductance of mechanically exfoliated
graphene at frequencies up to 8.5 GHz. The conductance at 4.2 K exhibits
quantum oscillations, and is independent of the frequency
- …