22 research outputs found

    Comparative Analysis of the Visual, Refractive and Aberrometric Outcome with the Use of 2 Intraocular Refractive Segment Multifocal Lenses

    Get PDF
    To demonstrate the results of ray tracing higher- and lower-order aberrations in pseudophakic eyes with rotationally asymmetrical segment multifocal lenses, total high- and low-order aberrations, measured by root mean square value (RMS), refraction, uncorrected distance and uncorrected near visual acuity (UCDVA and UCNVA), and tear break-up time, were measured at scotopic size in 42 eyes of patients implanted with bifocal refractive Mplus15/Mplus30 IOL with +1.5 dpt near addition (42 eyes of patients implanted with Mplus15)/+3.0 dpt near addition (91 eyes of patients implanted with Mplus30), and 107 eyes of control group. No significant differences were noticed between the examined groups concerning UCDVA, UCNVA, and tear break-up time (p < 0.001). Coma and total high-order aberrations were significantly higher for the Mplus30 lens in comparison to the Mplus15 lens and the control group (Coma, Trefoil p < 0.001, Secondary Astigmatism p = 0.002). The spherical aberrations were significantly higher in the lower-addition lens (p = 0.016) in comparison to the control group and to the higher-addition lens group (p < 0.001). Both intraocular lens models were successful at reaching refractive aim, good distance, and near function with the lower higher-order aberrations for the low-addition lens

    Bootstrapping of Corneal Optical Coherence Tomography Data to Investigate Conic Fit Robustness

    Get PDF
    Background: Fitting of parametric model surfaces to corneal tomographic measurement data is required in order to extract characteristic surface parameters. The purpose of this study was to develop a method for evaluating the uncertainties in characteristic surface parameters using bootstrap techniques. Methods: We included 1684 measurements from a cataractous population performed with the tomographer Casia2. Both conoid and biconic surface models were fitted to the height data. The normalised fit error (height—reconstruction) was bootstrapped 100 times and added to the reconstructed height, extracting characteristic surface parameters (radii and asphericity for both cardinal meridians and axis of the flat meridian) for each bootstrap. The width of the 90% confidence interval of the 100 bootstraps was taken as uncertainty and quoted as a measure of the robustness of the surface fit. Results: As derived from bootstrapping, the mean uncertainty for the radii of curvature was 3 µm/7 µm for the conoid and 2.5 µm/3 µm for the biconic model for the corneal front/back surface, respectively. The corresponding uncertainties for the asphericity were 0.008/0.014 for the conoid and 0.001/0.001 for the biconic. The respective mean root mean squared fit error was systematically lower for the corneal front surface as compared to the back surface (1.4 µm/2.4 µm for the conoid and 1.4 µm/2.6 µm for the biconic). Conclusion: Bootstrapping techniques can be applied to extract uncertainties of characteristic model parameters and yield an estimate for robustness as an alternative to evaluating repeat measurements. Further studies are required to investigate whether bootstrap uncertainties accurately reproduce those from repeat measurement analysis

    APOBEC Mutagenesis Is Concordant between Tumor and Viral Genomes in HPV-Positive Head and Neck Squamous Cell Carcinoma

    Get PDF
    APOBEC is a mutagenic source in human papillomavirus (HPV)-mediated malignancies, including HPV+ oropharyngeal squamous cell carcinoma (HPV + OPSCC), and in HPV genomes. It is unknown why APOBEC mutations predominate in HPV + OPSCC, or if the APOBEC-induced mutations observed in both human cancers and HPV genomes are directly linked. We performed sequencing of host somatic exomes, transcriptomes, and HPV16 genomes from 79 HPV + OPSCC samples, quantifying APOBEC mutational burden and activity in both host and virus. APOBEC was the dominant mutational signature in somatic exomes. In viral genomes, there was a mean of five (range 0–29) mutations per genome. The mean of APOBEC mutations in viral genomes was one (range 0–5). Viral APOBEC mutations, compared to non-APOBEC mutations, were more likely to be low-variant allele fraction mutations, suggesting that APOBEC mutagenesis actively occurrs in viral genomes during infection. HPV16 APOBEC-induced mutation patterns in OPSCC were similar to those previously observed in cervical samples. Paired host and viral analyses revealed that APOBEC-enriched tumor samples had higher viral APOBEC mutation rates (p = 0.028), and APOBEC-associated RNA editing (p = 0.008), supporting the concept that APOBEC mutagenesis in host and viral genomes is directly linked and occurrs during infection. Using paired sequencing of host somatic exomes, transcriptomes, and viral genomes, we demonstrated for the first-time definitive evidence of concordance between tumor and viral APOBEC mutagenesis. This finding provides a missing link connecting APOBEC mutagenesis in host and virus and supports a common mechanism driving APOBEC dysregulation

    An extended APOBEC3A mutation signature in cancer.

    No full text
    corecore