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Abstract: Background: Fitting of parametric model surfaces to corneal tomographic measurement
data is required in order to extract characteristic surface parameters. The purpose of this study was to
develop a method for evaluating the uncertainties in characteristic surface parameters using bootstrap
techniques. Methods: We included 1684 measurements from a cataractous population performed
with the tomographer Casia2. Both conoid and biconic surface models were fitted to the height
data. The normalised fit error (height—reconstruction) was bootstrapped 100 times and added to
the reconstructed height, extracting characteristic surface parameters (radii and asphericity for both
cardinal meridians and axis of the flat meridian) for each bootstrap. The width of the 90% confidence
interval of the 100 bootstraps was taken as uncertainty and quoted as a measure of the robustness
of the surface fit. Results: As derived from bootstrapping, the mean uncertainty for the radii of
curvature was 3 µm/7 µm for the conoid and 2.5 µm/3 µm for the biconic model for the corneal
front/back surface, respectively. The corresponding uncertainties for the asphericity were 0.008/0.014
for the conoid and 0.001/0.001 for the biconic. The respective mean root mean squared fit error was
systematically lower for the corneal front surface as compared to the back surface (1.4 µm/2.4 µm for
the conoid and 1.4 µm/2.6 µm for the biconic). Conclusion: Bootstrapping techniques can be applied
to extract uncertainties of characteristic model parameters and yield an estimate for robustness as an
alternative to evaluating repeat measurements. Further studies are required to investigate whether
bootstrap uncertainties accurately reproduce those from repeat measurement analysis.

Keywords: cornea; model surface fit; anterior segment tomography; model parameter uncertainties;
bootstrap techniques; robustness of surface fit; conoid surface; biconic surface

1. Introduction

Corneal topographers have a long tradition in ophthalmology for measuring and
visualising the corneal refractive power profile. The first such instruments (TMS-1, Com-
puted Anatomy, New York, New York USA and EyeSys (Technomed, Germany) were
launched in the early 1990s. A Placido pattern is projected to the cornea, reflected off the
pre-corneal tear film and imaged by a camera. Measurement with Placido topographers
requires an intact tear film, and this precludes eyes with insufficient tear film status. The
first Scheimpflug tomographers were developed some years later. These project a sequence
of rotating or scanning slits onto the cornea and capture the diffuse volume scattering
in a similar way to a slitlamp biomicroscope. This measurement technique is capable of
measuring the architecture of the entire anterior segment and is independent of the tear
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film status. The newest generation of corneal tomographers is based on optical coherence
technology (OCT). Here, a low-coherence light source, mostly in the red or infrared region
of the light spectrum, is projected onto the cornea, and the optical pathlength is compared
to the pathlength of a reference beam in a setup similar to a Michelson interferometer.

With topographic/tomographic examinations, clinicians are mostly interested in the
curvature data of the corneal front/front and back surface as well as in variations in the
corneal power profile [1]. The principal characteristics of the corneal surface are typically
described in terms of the corneal radius of curvature of both corneal surfaces in the flat and
steep meridian, the orientation of the flat or steep meridian, and the asphericity [1–6]. From
the curvature in both cardinal meridians and the orientation, we obtain the base curve or
equivalent power and astigmatism with the axis of the torus. The overall or meridional
asphericity gives advice, e.g., in contact lens fitting or in the selection of an appropriate
lens design for cataract surgery [7–9].

In most cases, these characteristic data are derived from fitting a parametric model
surface to the corneal topographic or tomographic data within a central region (e.g., in the
6 mm zone) [9–11]. However, we have to be aware that the eye (and, therefore, the cornea)
is not necessarily aligned to the instrument axis of the measurement device. Therefore, in
addition to the rotation of the surface around the Z axis, the tilt (around the X and Y axis)
and decentration in X, Y, and Z have to be considered during the fit procedure [3–5,12].
Furthermore, we have to consider that topographic and tomographic data contain some
noise, which may affect the characteristic surface parameters. However, in contrast to a
focal measurement of corneal front surface curvature at four distinct points using a manual
keratometer, extraction of the characteristic surface parameters may be based on thousands
of data points, making the output more robust [13].

While there is no unique surface model for the data fit covering all the measurement
devices on the market, all of them allow a direct data export in a common data file format,
enabling users to program their own customised fit procedure. In general, fit surfaces
are always a compromise between generating the most surface information (complex fit
surfaces) and simplicity (simple fit surfaces with fewer parameters [7–9]). A surface fit
with a complex surface provides detailed information about the surface but shows large
variabilities and tends to overfit the surface [10,11]. In contrast, a simple surface fit provides
only basic characteristics but is known to be very robust. As a rule of thumb, the fit surface
should always be as simple as possible and as complex as necessary.

In the ideal situation where multiple measurements are available, the robustness of a
corneal surface fit would normally be evaluated by performing repeat measurements on
each patient and fitting the surface model to each set of data individually. The variation of
the model parameters would then be used as a measure of the reliability (or robustness) of
the model.

However, where measurements are made on individual patients in a clinical setting, it
is not always practical to ask patients to undergo multiple repeat measurements in order to
assess repeatability or variability. In this type of situation, bootstrapping is a frequently
used technique for simulating and sampling the variation of model parameters using data
from a population where repeat measurements are not feasible or practical. Bootstrapping
involves building multiple samples from a single dataset of individual measurements by
sampling with replacement (as opposed to subsampling) in order to simulate multiple
samples taken from the population as a whole.

The strategy used here follows this principle: after fitting an initial surface model,
the fit error is evaluated and then resampled multiple times with replacement (i.e., boot-
strapped). All of these fit errors are then superimposed onto the initial fit, generating a
new set of data to which surface models are fitted. Statistical metrics such as median or
confidence intervals of the fit parameters are extracted from these bootstrapped models,
and analysed as an estimate of the robustness of the model.

If our goal is to extract curvatures in two orthogonal meridians, together with the
orientation of these meridians and the asphericity, then a simple conic model surface seems
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to be sufficient [6–9]. This surface covers all 2nd order surfaces, such as ellipsoids, hyper-
boloids, and paraboloids, with a strict coupling between the asphericity in both meridians.
Fortunately, there is a straightforward method to fit a conoid, including decentration and
rotations with respect to the X, Y, and Z coordinates. By contrast, using a biconic as the
model surface allows the extraction of the asphericity in both meridians independently.
This is, however, a bit more complex [9–11] as there is no straightforward (algebraic) tech-
nique for fitting a biconic surface, including all six degrees [5,12] of freedom (decentration
and rotations) to measurement data.

The purpose of this study was as follows:

• To present a method for extracting corneal front and back surface measurement data
from an OCT-based corneal tomographer and to fit a simple conoid surface model
to obtain the curvature in both cardinal meridians together with the orientation and
the overall asphericity of the conoid and the alignment of the conoid in terms of apex
decentration in X, Y, Z, and tilt (rotation around X and Y);

• To use the alignment data from the previous step (apex decentration in X, Y, Z, and
tilt (around X and Y)) and rotation (around Z of the conic) to fit a biconic model
surface to the tomographic measurement data in order to obtain the curvature and the
asphericity separately for both cardinal meridians;

• To evaluate the robustness of the conic and biconic surface model fit in terms of 90%
confidence intervals (apex decentration, tilt, rotation, curvatures, and asphericities)
using bootstrapping techniques;

• To apply this analysis to a large dataset of anterior segment OCT data extracted from
the Casia2 with measurements from a cataractous population.

2. Materials and Methods
2.1. Dataset for Our Data Analysis

In this retrospective study, a data download containing 5636 measurements from the
Augen- und Laserklinik Castrop-Rauxel, Castrop-Rauxel, Germany, was assessed. The local
ethics committee (Ärztekammer des Saarlandes) provided a waiver for this study (157/21).
The data were filtered at the source for measurements prior to cataract surgery. Duplicate
measurements of eyes were discarded from the dataset. Where measurements of both
eyes were available, one eye was selected randomly for consideration in our evaluation.
After filtering, the raw export data (.CSV-format) containing 1844 measurements were
transferred to us in an anonymised fashion, precluding back-tracing of the patient. The
anonymised data contained tomographic measurements acquired using the Casia2 (Tomey
GmbH, Nürnberg, Germany, software version Ver.50.5A.03). The CSV data were imported
into MATLAB (Matlab 2021, MathWorks, Natick, MA, USA) for further processing.

2.2. Preprocessing of the Data

Custom software was written in Matlab. In the standard export application of the
Casia2 software, the data included lateral position data and data on axial, keratometric, or
instantaneous curvature/power of both surfaces or real/refractive power of the cornea,
as well as height and elevation data. In addition to eye side (OS or OD), gender, and
age, the data selection was restricted to the lateral position and height of the corneal front
and back surface, and all other data were discarded. Each data block (radial position r
and surface height (Z) of both surfaces) contained cylinder coordinate measurements at
32 semi-meridians (angle θ from 0◦ to 348.75◦ in steps of 11.25◦) with 400 radial positions
(radial distance r from centre from 0.02 to 8.0 mm in steps of 0.02 mm) each in a central
16 mm zone. Measurements with a quality marker QS other than ‘OK’ [13] or incomplete
datasets for the corneal front or back surface height within the 7 mm central zone of the
cornea were excluded from the study.
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2.3. Surface Fit with a Conoid and a Biconic to the Corneal Front and Back Surface

The strategy of fitting model surfaces to the measurement data of the corneal front
and back surfaces was identical. Cylindrical coordinates (r,θ,Z) restricted to the central
6 mm zone (150 × 32 data points both for the front and back surface) were converted to
Cartesian coordinates (X,Y,Z) for further processing [7,8]. With a formulation of a conoid as
a quadric surface

(
X Y Z

)
·

a11
a12
2

a13
2a12

2 a22
a23
2a13

2
a23
2 a33

·
X

Y
Z

+
(
b1 b2 b3

)
·

X
Y
Z

+ c = 0 (1)

or

a11·X2 + a22·Y2 + a33·Z2 + a12·XY + a31·XZ + a23·YZ + b1·X + b2·Y + b3·Z + c = 0 (2)

where a11 . . . a33 refer to the elements of the 3 × 3 matrix A and b1 . . . b3 to the elements
of the vector b and c to a constant (intercept) [10,11]. The elements of matrix A and
vectors b and c can be directly extracted from the measurement data X, Y, and Z (with
data points x1 . . . xM, y1 . . . yM, and z1 . . . zM). e.g., solving the following linear equation
system [10,11]:
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Assuming the conoid in its canonical form with semi-axes sa1, sa2, and sa3 and
translated and rotated coordinates Xc, Yc, and Zc

X2
c

sa2
1
+

Y2
c

sa2
2
+

Z2
c

sa2
3
= 1 (4)

The conversion of coordinates from measurement coordinate system X/Y/Z to Xc/Yc/Zc
and vice versa is described by a rotation matrix U and a translation vector T with:

X = U·(Xc + T)
Xc = U−1·X− T = U′·X− T

(5)

In this context, (.)′ refers to the transpose of (.), and matrix A is identified as a product
of A = U′·L·U with the rotation matrix U and the 3× 3 diagonal matrix L. Rotation matrices
(like U) are known to be positive Hermitian with a determinant of 1 and the inverse of
the matrix (.)−1 equals the transpose (.)′. With eigenvalue decomposition, U refers to the
3 × 3 matrix with the eigenvectors, and L to the 3× 3 diagonal matrix with the eigenvalues.

From the parameter vector [a11 a22 1 a12 a13 a23 b1 b2 b3 c]′ derived from Equation (3)
and completed by element 3, matrix A as defined in Equation (1) is evaluated with an
eigenvalue decomposition, and the 3 Euler angles α (tilt of the conoid around X), β (tilt of
the conoid around Y), and γ (rotation of the conoid around Z, orientation of the principal
meridian or astigmatism axis) were extracted [6,10,11]. The eigenvectors (the 3 elements
of the diagonal matrix L) define the semi-axes of the ellipsoid in the canonical form sa1,
sa2, and sa3. From the location of the centre of the ellipsoid (T) and the semi-axes sa1,
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sa2, and sa3 the location of the apex of the conoid (with coordinates CAx, CAy, and CAz)
is derived, and with sa1, sa2, and sa3 and the constant c the radius of curvature in both
principal meridians (Rx and Ry) and the asphericities (Qx and Qy) are calculated.

CRx =
sa2

1
sa3

CRy =
sa2

2
sa3

CQx =
sa2

1
sa2

3
− 1

CQy =
sa2

2
sa2

3
− 1

(6)

As can be seen from Equation (6), the asphericities CQx and CQy are coupled and
cannot be calculated independently [9–11]. The coordinates X/Y/Z are then transformed to
the coordinate system of the canonical form of the conoid Xc/Yc/Zc using Equation (5), and
the fit error EC for the conoid derived as the difference between Zc and the reconstructed
conoid ZCRC surface in canonical form:

ZCRC = sa3·
√

1− X2
c

sa2
1
+ Y2

c
sa2

2

EC = Zc − ZCRC

(7)

In the next step, the coordinate data corresponding to the canonical form of the conoid
Xc/Yc/Zc were used to fit a parametric biconic surface model [9] aligned to the orientation
of the conoid. In a general form, a parametric biconic surface with a height ZB is defined by:

ZB = Bz0 +

X2
c

BRx
+ Y2

c
BRy

1 +
√

1− (1 + BQx)
X2

c
BRx2 −

(
1 + BQy

) Y2
c

BRy2

(8)

The biconic defined in Equation (8) was fitted to the data Xc/Yc/Zc using nonlinear
iterative optimisation. The 5 parameters of the biconic (offset of the apex of the biconic
to the apex of the conoid Bz0, both radii of curvature BRx and BRy and asphericities
BQx and BQy [9]) were determined using the Levenberg-Marquardt algorithm [14,15]
by minimising the sum of squared errors ∑1...M(Zc − ZB)

2. The reconstructed biconic
surface in the canonical coordinate system of the conoid ZBRC is defined by ZBRC = ZB by
inserting the parameters (BRx, BRy BQx, and BQy) derived from the Levenberg–Marquardt
optimization [14,15] into Equation (8), and the fit error EB is derived from the difference
between the ZC and the reconstructed surface height:

EB = ZC − ZBRC = ZC − Bz0 −
X2

c
BRx

+ Y2
c

BRy

1 +
√

1− (1 + BQx)
X2

c
BRx2 −

(
1 + BQy

) Y2
c

BRy2

(9)

2.4. Implementation of Bootstrapping for Robustness Evaluation

Since the anterior segment OCT measurement data include noise, a bootstrapping
strategy [16,17] was implemented to evaluate the effect of measurement noise on the
extracted parameters of both surface models and to evaluate the robustness of the conoid
and biconic fits. Bootstrapping was implemented separately for the conoid and the biconic
fits for both the corneal front and back surface, with measurement data transformed to the
canonical coordinate system [10,11] defined by the orientation of the conoid (Xc/Yc/Zc).
For both surface models and surfaces, a sequence of NB = 100 bootstraps was used to assess
the uncertainties of the fit parameters [18–20]. Our bootstrap process (shown here for the
conoid example) included the following steps:
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(1) The fit error EC (Equation (7)) or EB (Equation (9)), which was evaluated in a pilot
study to increase over the distance from the centre r (EC ~ d0 + d2·r2; d0 = 0.04 and
d2 = 1.05; r2 = x2 + y2), was normalised to EC0 = EC/(d0 + d2·r2) and EB0 = EB/(d0 + d2·r2)
to omit heteroscedasticity of the fit error over r [10,11].

(2) The fit error EC0 or EB0 was sampled NB times with replacement (EC01 to EC0NB or
EB01 to EB0NB).

(3) The normalisation [11] of the NB bootstrapped fit errors EC01 to EC0NB (or EB01 to
EB0NB) was reversed (shown here for the conoid example) to obtain EC01′ . . . EC0NB

′

EC01′ = EC01·
(
d0 + d2·r2)

. . . . . . . . .
EC0N′B = EC0NB·

(
d0 + d2·r2) (10)

(4) The bootstrap errors after reversion EC01′ to EC0NB
′ (or EB01′ to EB0NB

′) were added
to the conoid or biconic surface reconstructions ZCRC or ZBRC. For each bootstrap,
a new conoid or biconic surface fit was performed to generate the characteristic
surface parameters. In total, NB×2×2 = 400 surface fit cycles were processed for each
examination for 100 bootstraps, 2 surfaces, and 2 surface models.

(5) The 90% confidence intervals [18–20] were derived from the NB sets of surface fit
parameters for the conoid (CRx, CRy CQx, CQy, and γ) and the biconic (BRx, BRy
BQx, and BQy). For the conoid rotation angle γ, which shows periodicity at 180◦, a
cyclic correction was applied to evaluate the robustness of the astigmatic axis. The
90% confidence interval was quoted in this context as the ‘uncertainty’ of the surface
parameters [18].

2.5. Postprocessing of Data and Statistical Evaluations

For each of the surface representations (conoid and biconic) the refractive power of
the corneal front surface in both cardinal meridians CPx, CPy, BPx, and BPy was calculated
based on the curvature radii CRx, CRy, BRx, and BRy and using n = 1.376 as the refractive
index (Liou-Brennan schematic model eye [21]). Accordingly, the power of the corneal
back surface was calculated using refractive indices of aqueous humour n = 1.336 and
cornea n = 1.376. In addition, the mean power, the astigmatic power, and the vector com-
ponents projected to the 0/90◦ and the 45/135◦ meridian were derived for both corneal
surfaces from CPx, CPy, BPx, BPy, and the rotation angle γ indicating the orientation of the
conic surface fit [6–9]. For both corneal surfaces, explorative data are shown with mean,
standard deviation (SD), median, and 90% confidence intervals (5% quantile as the lower
bound and 95% quantile as the upper bound) for the conoid and the biconic surface fit
to the corneal front and back surface. The fit errors for the conoid (EC) and the biconic
(EB) for both corneal surfaces are described by mean, SD, median, and root mean squared
value (rms). The width of the 90% confidence interval [18–20] of the NB bootstraps as a
measure of the robustness of the fit to both corneal surfaces was evaluated for both the
conoid (surface parameters CRx, CRy CQx, CQy, and γ) and the biconic (surface parameters
BRx, BRy BQx, and BQy) models.

3. Results

From the N = 1844 data from the Casia2 tomographer transferred to us, a total of
N = 1684 (911 right eyes and 773 left eyes) were used after eliminating measurements with
incomplete data or with a quality check other than ‘OK’. The mean age at the time of
measurement was 70.63 ± 12.88 years.

Table 1 shows the position of the apex in the coordinate system of the Casia2 (X/Y/Z)
for the conoid and biconic fits to the corneal front and back surface data. The X and Y
components refer to lateral decentration of the surface, whereas the Z component refers
to the axial displacement. The central corneal thickness can be extracted directly from the
difference between the axial displacements of the corneal front and back surface fits. The
axis alignment of the conoid, as shown with the tilt components (rotations around the X
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and Y axis), was used to transform the coordinates of the Casia2 to the coordinates of the
canonical form (XC/YC/ZC). Figure 1 displays the data spread and distribution of the apex
position for both surface fit models and corneal surfaces together with the mean, median,
and 90% confidence intervals in a violin plot in the upper graph. The tilts of the conoid
around the X and Y axis in the middle plot indicate that the conoids are typically somewhat
skewed relative to the coordinate system of Casia2. From the lower plot, we can see that
the flat axis of the conoid (the cylinder axis γ) around the horizontal meridian (0◦/180◦,
astigmatism with the rule) is much more frequent in the dataset compared to oblique axis
(45◦/135◦ meridian) or to an astigmatism against-the-rule (90◦/270◦ meridian).

Table 1. Explorative data of apex position (conoid fit and biconic fit) in the X/Y/Z coordinates and
the tilt of the conoid surface fit around the X and Y axis. As the alignment of the conoid surface
(coordinates XC/YC/ZC) was used to fit the biconic surface, the tilt angles α and β are identical. SD
refers to the standard deviation and Quantile 5% and Quantile 95% to the lower and upper bound of
the 90% confidence interval.

Apex Position and Tilt
N = 1684

Apex Position Conoid Surface Fit Apex Position Biconic Surface Fit Tilt Conoid Surface Fit

X in mm Y in mm Z in mm X in mm Y in mm Z in mm X (α) in ◦ Y (β) in ◦

Corneal
front
surface

Mean −0.0538 −0.0834 0.0142 −0.0538 −0.0834 0.0142 −0.6274 0.4045

SD 0.2976 0.3460 0.0131 0.2976 0.3460 0.0131 2.5971 2.2845

Median −0.0557 −0.0795 0.0098 −0.0557 −0.0795 0.0097 −0.6021 0.4263

Quantile 5% −0.6483 −0.7366 0.0004 −0.6483 −0.7366 0.0004 −5.4580 −4.0041

Quantile 95% 0.5569 0.6313 0.0474 0.5569 0.6313 0.0474 4.6602 4.7682

Corneal
back
surface

Mean −0.0242 0.0246 0.5723 −0.0242 0.0246 0.5723 0.6568 0.2795

SD 0.4023 0.4013 0.0440 0.4023 0.4013 0.0440 3.5610 3.2290

Median −0.0169 0.0318 0.5724 −0.0169 0.0318 0.5724 0.7532 0.2397

Quantile 5% −0.7447 0.7091 0.4844 −0.7447 −0.7091 0.4844 −5.7933 −5.8114

Quantile 95% 0.7204 0.7302 0.6587 0.7214 0.7302 0.6589 7.0155 6.0655
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Figure 1. Alignment of the conoid surface fit to the corneal front surface (left side) and back surface
(right side) measurement data. The position of the apex with respect to the coordinate system of
Casia2 is shown in the upper plot. The tilt of the conoid (rotations around the X and Y axis) is shown
in the middle plot. The violin plots display the distribution together with the data spread, the mean,
the median, and the 90% confidence interval. The polar histograms in the lower plot show the angular
distribution of the flat axis of the conoid (rotation around the Z axis, astigmatism axis).
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Table 2 lists the explorative data for the radii of curvature and the asphericity in the
flat (X) and the steep (Y) meridian for a conoid and biconic surface fitted to the corneal
front and back surface data of the Casia2. With the conoid fit, both asphericities are linked
together due to the definition of the quadric surface, whereas for the biconic fit, the radii of
curvature and asphericities in both principal meridians were fitted independently. Figure 2
displays the data scatter and the distributions of the radii of curvature and the asphericity
in the flat (X) and steep (Y) meridian for the conoid and biconic model surface fitted to
the measurement data. We can see directly from the plot that the radii of curvature at the
corneal front surface are much larger as compared to the radii of curvature at the corneal
back surface with both surface models but that there is no systematic difference between the
asphericities for the corneal front and back surface or between the flat and steep meridian
of both surface models.

Table 2. Explorative data of radii of curvature in both principal meridians (flat meridian in X and steep
meridian in Y) derived from the canonical form of the conoid surface (left columns) and the biconic
surface (right columns) for the corneal front and back surface. SD refers to the standard deviation
and Quantile 5% and Quantile 95% to the lower and upper bound of the 90% confidence interval.

Radii of Curvature
and Asphericities
N = 1684

Radii of the Conoid
Surface Fit

Asphericity of the
Conoid Surface Fit

Radii of the Biconic
Surface Fit

Asphericity of the
Biconic Surface Fit

CRx in mm CRy in mm CQx CQy BRx in mm BRy in mm BQx BQy

Corneal
front
surface

Mean 7.7350 7.5852 −0.3440 −0.3511 7.7384 7.5799 −0.3265 −0.3706

SD 0.2696 0.2610 0.1588 0.1561 0.2689 0.2614 0.1703 0.1730

Median 7.7235 7.5609 −0.3564 −0.3637 7.7243 7.5559 −0.3366 −0.3784

Quantile 5% 7.2959 7.1816 −0.5827 −0.5846 7.3001 7.1679 −0.6050 −0.6441

Quantile 95% 8.3314 8.1642 0.1109 0.0986 8.3480 8.1377 0.1198 0.0913

Corneal
back
surface

Mean 6.6458 6.3670 −0.2723 −0.2940 6.6774 6.3422 −0.2002 −0.3559

SD 0.2697 0.2670 0.1536 0.1512 0.2643 0.2694 0.1445 0.1831

Median 6.6375 6.3439 −0.2873 −0.3099 6.6707 6.3196 −0.2115 −0.3737

Quantile 5% 6.1832 5.9262 −0.5290 −0.5376 6.2035 5.8910 −0.4419 −0.6690

Quantile 95% 7.2433 7.0296 0.1323 0.0846 7.2622 7.0139 0.2022 0.0813

Table 3 gives an overview of the explorative data for the uncertainties of the surface
parameters using bootstrapping. Using a sequence of 100 bootstraps of the fit error, the
variation of both surface models fitted to the corneal front and back surface data was
evaluated as the width of the 90% confidence interval. We can see from the Table that the
uncertainty of the radii of curvature extracted from the conoid fit shows a mean variation
of around 3 µm/7 µm for the corneal front/back surface and, correspondingly, around
2.5 µm/3 µm for the radii of curvature extracted from the biconic fit. However, if the 95%
quantile is considered, the uncertainty in the radii extracted from the conoid increases to
around 50 µm for the front surface fit and 1/10 of an mm for the back surface fit. For the
radii extracted from the biconic surface fit, the respective values for the corneal front/back
surface increase to around 40 µm/50 µm. Figure 3 shows the data spread and distributions
of the uncertainties of the bootstrapped radii of curvature (upper graph) and asphericities
(middle graph) for the conoid and the biconic surface model fitted to the corneal front
and back surface data. From the distributions, we find that there might be some extreme
values and outliers where the surface fit with a conoid or biconic is not really stable. The
lower graph shows the uncertainty of the orientation of the flat axis of the conoid. From
this graph, we can see that the axis can be extracted from the conoid model with high
reproducibility, with the variation between the bootstraps in a range of up to 3◦.
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intervals of the radii of curvature and the asphericities for the flat and steep meridian for the conoid
and the biconic surface fit to the corneal front (left side) and back surface (right side) data. In the
canonical form, X refers to the flat meridian, Y to the steep meridian. In the upper plot, the radii of
curvature are shown, and in the lower plot, the asphericities.

Table 3. Explorative data of the width of the 90% confidence intervals of the bootstrap samples
(uncertainties) as a measure for the robustness of the surface fit. The confidence intervals for the radii
and asphericity in the flat (in X) and steep meridian (in Y) were derived from NB = 100 bootstraps
from the canonical form of the conoid surface (left columns) and the biconic surface (right columns)
for the corneal front and back surface. SD refers to the standard deviation and Quantile 5% and
Quantile 95% to the lower and upper bound of the 90% confidence interval.

Radii and Asphericity
Uncertainties (Data × 100)
N = 1684

Radii of the Conoid
Surface Fit

Asphericity of the
Conoid Surface Fit

Radii of the Biconic
Surface Fit

Asphericity of the
Biconic Surface Fit

CRx in mm CRy in mm CQx CQy BRx in mm BRy in mm BQx BQy

Corneal
front
surface

Mean 0.2999 0.3025 0.8317 0.8133 0.2517 0.2389 1.0606 0.9834

SD 0.9090 0.9131 0.3579 0.3689 0.0967 0.0726 0.4553 0.3362

Median 0.1798 0.1808 0.7754 0.7585 0.2383 0.2272 0.9995 0.9377

Quantile 5% 0.1199 0.230 0.5220 0.5135 0.1487 0.1471 0.5236 0.4847

Quantile 95% 0.4801 0.4879 1.4678 1.4322 0.4291 0.4031 1.8928 1.7336

Corneal
back
surface

Mean 0.7314 0.7367 0.9631 0.9358 0.3102 0.2941 1.0336 0.9472

SD 1.9631 1.9518 0.5367 0.6433 0.1107 0.1263 0.4221 0.4422

Median 0.2216 0.2346 0.8467 0.8046 0.2931 0.2745 0.9582 0.8904

Quantile 5% 0.1532 0.1673 0.5851 0.5575 0.1884 0.1820 0.5193 0.4634

Quantile 95% 9.6643 9.2566 2.1749 2.2237 0.5483 0.5108 1.9516 1.7513
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Figure 3. Uncertainty (width of the 90% confidence interval) as a measure for the robustness of the fit
of the corneal front and back surface Casia2 measurement data with a conoid and biconic surface
model. The confidence interval was derived from bootstrapping the data with NB = 100 sequences.
The upper graph shows the violin plot with the data scatter, the distribution, and the mean, median,
and confidence interval for the flat (X) and steep (Y) meridians from the bootstrapped radii of
curvature, the middle plot the respective graph for the asphericities. The lower graph displays the
histograms of the bootstrapped variation in the flat axis of the conoid for the front (left side) and
back surface (right side). The 180◦periodicity of the conoid axis was considered in the plot.

Table 4 lists the explorative data for the fit error of the conoid and the biconic surface
model to both corneal surfaces. There is no systematic offset of the fit error (the mean and
median error of the conoid and biconic fit are around 0). However, the most important
parameters are the SD and rms fit errors, which are, on average, around 1.4 µm/2.3 µm for
the corneal front/back surface with the conoid surface model and around 1.4 µm/2.2 µm
for the biconic surface model. Considering the 95% quantile, the mean SD fit error increases
to 2.3 µm/4.8 µm for the conoid surface model and to 2.2 µm/4.5 µm for the biconic surface
model fitted to the corneal front/back surface. In Figure 4, we see from the distributions of
the mean, SD, median, and rms fit error that there is no systematic offset, but also that in
some (rare) cases, the SD or rms fit error is much higher compared to the ‘normal’ fit error
of around 1–2 µm.

Figure 5 displays on the left graph the corneal power data extracted from the radii
data of both corneal surface models fitted to the corneal front and back surfaces. Based
on the refractive indices derived from a schematic model eye, the refractive power of the
corneal front/back surface ranges around 49 dpt/−6 dpt. On average, there is only a
small difference between the refractive power of the flat (X) and the steep meridian (Y).
Decomposing astigmatism as the difference between the refractive powers of the steep and
the flat meridians into vector components, the double angle plots in the right graph indicate
that the distribution for astigmatism at the corneal front surface is systematically shifted to
the right, and the distribution for astigmatism at the corneal back surface is shifted to the
left. This indicates that at the corneal front surface, we frequently have an astigmatism with
the rule, whereas, at the corneal back surface, we mostly have astigmatism against the rule.
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Table 4. Explorative data of the mean, SD, median, and rms fit error as the difference in height
between the measurement data transformed to the canonical coordinates (Xc/Yc/Zc) and the surface
representation with a conoid (left columns) or a biconic (right columns) for the corneal front and back
surface. SD refers to the standard deviation and Quantile 5% and Quantile 95% to the lower and
upper bound of the 90% confidence interval.

Fit Error Conoid and
Biconic Surface
N = 1684

Conoid Surface Fit in µm Biconic Surface Fit in µm

Mean SD Median rms Mean SD Median rms

Corneal
front
surface

Mean −0.0001 1.4322 −0.0348 1.4320 0.0000 1.4023 −0.0339 1.4022

SD 0.0006 0.4919 0.0812 0.4919 0.0000 0.4801 0.0714 0.4800

Median −0.0001 0.3528 −0.0308 1.3527 0.0000 1.3240 −0.0310 1.3238

Quantile 5% −0.0003 0.9471 −0.1801 0.9470 0.0000 0.9269 −0.1841 0.9268

Quantile 95% 0.0000 2.3346 0.0959 2.3344 0.0000 2.2486 0.1018 2.2483

Corneal
back
surface

Mean −0.0008 2.7186 0.0023 2.7183 0.0000 2.6307 −0.0093 2.6304

SD 0.0036 1.1860 0.1794 1.1858 0.0000 1.1377 0.1811 1.1376

Median −0.0004 2.4918 0.0059 2.4915 0.0000 2.4205 −0.0060 2.4202

Quantile 5% −0.0024 1.8803 −0.2152 1.8801 0.0000 1.8498 −0.2275 1.8496

Quantile 95% −0.0002 4.7973 0.2299 4.7968 0.0000 4.4671 0.2304 4.4666

J. Clin. Med. 2023, 12, x FOR PEER REVIEW  11  of  16 
 

 

for the corneal front/back surface with the conoid surface model and around 1.4 µm/2.2 

µm for the biconic surface model. Considering the 95% quantile, the mean SD fit error 

increases  to 2.3 µm/4.8 µm  for  the conoid surface model and  to 2.2 µm/4.5 µm  for  the 

biconic surface model fitted to the corneal front/back surface. In Figure 4, we see from the 

distributions of the mean, SD, median, and rms fit error that there is no systematic offset, 

but also that in some (rare) cases, the SD or rms fit error is much higher compared to the 

‘normal’ fit error of around 1–2 µm.   

 

Figure 4. Violin plot  showing  the data  spread, distribution, mean, median, and 90%  confidence 

intervals of  the mean, standard deviation  (SD), median, and  root mean squared fit error  for  the 

corneal  front surface  (upper plot) and  the corneal back surface  (lower plot). The fit error  for  the 

conoid surface fit/biconic surface fit is displayed on the left side/right side. 

Table 4. Explorative data of  the mean, SD, median, and  rms fit error as  the difference  in height 

between the measurement data transformed to the canonical coordinates (Xc/Yc/Zc) and the surface 

representation with a conoid (left columns) or a biconic (right columns) for the corneal front and 

back surface. SD refers to the standard deviation and Quantile 5% and Quantile 95% to the lower 

and upper bound of the 90% confidence interval. 

Fit Error Conoid and Biconic 

Surface   

N = 1684 

Conoid Surface Fit in μm  Biconic Surface Fit in μm 

Mean  SD  Median  rms  Mean  SD  Median  rms 

Corneal 

front 

surface 

Mean  −0.0001  1.4322  −0.0348  1.4320  0.0000  1.4023  −0.0339  1.4022 

SD  0.0006  0.4919  0.0812  0.4919  0.0000  0.4801  0.0714  0.4800 

Median  −0.0001  0.3528  −0.0308  1.3527  0.0000  1.3240  −0.0310  1.3238 

Quantile 5%  −0.0003  0.9471  −0.1801  0.9470  0.0000  0.9269  −0.1841  0.9268 

Quantile 95%  0.0000  2.3346  0.0959  2.3344  0.0000  2.2486  0.1018  2.2483 

Corneal 

back 

surface 

Mean  −0.0008  2.7186  0.0023  2.7183  0.0000  2.6307  −0.0093  2.6304 

SD  0.0036  1.1860  0.1794  1.1858  0.0000  1.1377  0.1811  1.1376 

Median  −0.0004  2.4918  0.0059  2.4915  0.0000  2.4205  −0.0060  2.4202 

Quantile 5%  −0.0024  1.8803  −0.2152  1.8801  0.0000  1.8498  −0.2275  1.8496 

Quantile 95%  −0.0002  4.7973  0.2299  4.7968  0.0000  4.4671  0.2304  4.4666 

Figure 4. Violin plot showing the data spread, distribution, mean, median, and 90% confidence
intervals of the mean, standard deviation (SD), median, and root mean squared fit error for the
corneal front surface (upper plot) and the corneal back surface (lower plot). The fit error for the
conoid surface fit/biconic surface fit is displayed on the left side/right side.
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Figure 5. Refractive power derived from the radius of curvature data from the conoid and biconic
fits the corneal front and back surface. Based on the refractive indices for air, cornea, and aque-
ous humour from the Liou–Brennan schematic model eye, the power of the corneal front surface
(upper left graph) and the corneal back surface (lower left graph) is shown for the flat meridian (X),
the steep meridian (Y), and the mean power with violin plots. The decomposition of astigmatism
into vector components (double angle plot) is displayed for both surface models for the corneal front
surface (upper right graph) and the corneal back surface (lower right graph) with scatterhistograms.

4. Discussion

Corneal tomographers are well established in clinical routine for analysing the entire
anterior segment of the eye with a focus on both corneal surfaces. Especially for the
diagnosis of corneal pathologies, these tomographic measurements assist classical slit lamp
examination, and many indices and markers are derived from the devices. In contrast
to simulated keratometry values (SimK [13]), which aim to replicate the measures of a
manual keratometer by providing the local corneal power at four distinct locations in the
mid periphery (two points each at two cardinal meridians), the tomographer is capable of
extracting corneal curvature from thousands of data points which should, in general, be
much more robust compared to SimK [13]. In addition, as the entire corneal front and the
back surface are measured, the asphericity as an increase or decay of refractive power from
the centre to the periphery can easily be extracted from the data [3,4]. For that purpose, a
model surface has to be fitted to the measured data points. This parametric model surface
should be individually adapted to the requirements, meaning that if we were only interested
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in the average radius of curvature of the corneal surface, a simple floating sphere as the
model surface would be sufficient, and tilts or rotations would not have to be considered.
However, in most clinical applications, such a simple model surface is not sufficient for the
characterisation of the cornea [3,4,6–9]. If we wish to extract the average central curvature
together with the average asphericity, we require at least a rotational symmetric conoid
(two-axis conoid), and for the surface fit to the data points, we have to consider both
displacements of the model surface and tilt (rotations around X and Y). However, in most
clinical applications, we cannot restrict the models to rotationally symmetric surfaces as
we are also interested in surface astigmatism [6]. The simplest model surface for those
applications is a three-axis conoid (quadric surface), which provides the central radius of
curvature in two cardinal meridians together with the axis of the flat (or steep) meridian
and the asphericity [22]. However, we have to be aware that the canonical form of a conoid
is restricted to three degrees of freedom, meaning that if the radii of curvature are selected
independently, we have only one degree of freedom left for the asphericity, and therefore
the asphericity in both meridians cannot be selected independently. In a more general case,
if we are interested in extracting the radii of curvature and the asphericity independently
for both cardinal meridians [9], we have to use a biconic surface model. However, in this
case, we have to be aware that the surface fit with a biconic model is more complex as we
are no longer dealing with a quadratic function, which leads to a solution of a least squares
matrix problem [9]. We also have to be aware that the more individual the surface, the less
robust is our surface fit. If we would like to go into even more detail and extract additional
characteristic surface data, we could add some higher order polynomial terms [2,10,22] to
the biconic model surface (even order radial symmetric polynomials starting with radial
order 4) or add Zernike expansion terms to consider individual fluctuations of the corneal
refractive power profile.

However, we have to keep in mind that, in reality, the corneal surfaces are not fully
represented by such a model surface, and in addition, all measurement data of the corneal
surface are somewhat contaminated with noise. For optical measurement, the uncertainty of
the data points (as a difference in height Z) typically increases from centre to periphery [11]
as we deal with a convex surface for two reasons: (1) if we assume that the uncertainty of
the data points perpendicular to the surface is constant over the surface, the uncertainty
in Z increases from centre to periphery, and (2) the back-reflection of light is strongest
in the centre which means that the signal to be evaluated in the measurement is much
weaker in the periphery [13]. Both the variations of the corneal shape from the ‘perfect’
surface model and the measurement noise affect the precision of the surface fit (parameters).
For this purpose, we implemented a bootstrapping strategy that provides an estimate for
the uncertainty of the surface model parameters with ‘imperfect’ data and measurement
noise [18–20]. The surface measurement data are sampled NB times with replacement,
meaning that in each of the NB data sequences, a subset of the measurement data (with
duplicates) is considered. Then, for each of the NB sequences, a surface fit is implemented,
and the characteristic surface parameters are extracted. The width of the confidence
intervals of the characteristic surface parameters (e.g., radii of curvature in both meridians)
as a measure for the uncertainty is used as a metric for the robustness of the fit. In this
study, we bootstrapped the fit error of the initial surface characterisation NB = 100 times.
The bootstrapped fit error was added to the model surface reconstruction [18] of the initial
surface fit, and those data were used to retrieve the parameters of the model surface. Finally,
the 90% confidence interval [18,20] of the NB = 100 characteristic surface parameter sets
was quoted as the uncertainty of the fit. In this context, we have to consider that the fit
error increases from the centre to the periphery, which makes normalisation of the fit error
before bootstrapping necessary. In a pilot study, we evaluated the typical behaviour of the
fit error in the radial direction and found that for both corneal surfaces, the fit error in the
radial direction is represented by a simple polynomial of 2nd order with an intercept d0
and a quadratic term d2. This polynomial was used for normalisation before bootstrapping
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the fit error, and the normalisation was reversed before adding the bootstrapped fit error to
the reconstructed surface data of the initial fit [11].

In the current study, we used a large dataset from the Casia2 anterior segment tomo-
grapher. The dataset included measurements of elderly patients before cataract surgery
(only one eye measured per patient), and duplicate measurements per eye were filtered out.
All data were checked for the proper quality marker provided by the Casia2 software as
well as for complete data in the 7 mm zone. Finally, we restricted our analysis to the data
within the central 6 mm zone. The zone to be considered in such data analysis is always
a compromise between the robustness of the surface fit (the larger, the more robust) and
the relevance of the data for the visual performance (central and paracentral data over the
entrance pupil are most relevant for vision). The measurement data were first used to fit a
conoid surface [6]. From this conoid surface, we extracted the radii of curvature and the
asphericity in both cardinal meridians, the decentration of the centre, the location of the
apex, and the orientation in terms of tilt angles around X and Y (α and β) and the rotation
around Z (angle γ) as the orientation of the flat meridian [10,11]. The apex location and
orientation angles of the conoid were used to transform the coordinates of the measurement
data to the canonical form (XC/YC/ZC). This representation of the measurement data was
used to extract the surface parameters of the biconic surface as a general calculation strategy
for extracting a biconic with four surface parameters (BRx, BRy, BQx, BQy) together with
six degrees of freedom (displacement of the apex in X/Y/Z and orientation angles α/β/γ)
proved to yield unstable results in some cases.

After fitting initial parametric conoid and biconic surface models to the corneal front
and back surface measurement data, bootstrapping [16,17] was used for both surface
models and corneal surfaces to investigate the uncertainty of the surface fit parameters.
We found that the mean uncertainty of the radii of curvature for the conoid surface model
was in the range of 3 µm for the front surface and 7 µm for the back surface. For the
biconic surface model, the uncertainty was slightly lower in a range of 2.5 for the front
surface and 3 µm for the back surface. As the biconic fit has four instead of three degrees of
freedom in the canonical form of the surface, it is obvious that the uncertainties are equal
or lower compared to the conoid surface fit. We also found that the mean uncertainty of
the asphericity for the conoid surface model was in the range of 0.008 for the front surface
and 0.015 for the back surface. For the biconic surface model, the uncertainty was in the
range of 0.01 for the corneal front and back surfaces. Referenced to the absolute value of
corneal asphericity, which is around −0.22 according to the Liou–Brennan schematic model
eye [21], the relative uncertainty is much higher compared to the relative uncertainty of
the radii. However, we learn from the results that the uncertainty of the extracted radii
and asphericities of both surface models for both corneal surfaces for a ‘normal elderly
population’ measured before cataract surgery is quite below any clinical significance. With
some corneal pathologies, such as keratoconus, the uncertainty might be much larger. From
our data, we also see that the mean rms fit error as the root mean squared height difference
between the measured data and the reconstructed data in the canonical coordinates is
around 1.4 µm/2.7 µm for the conoid surface model and 1.4 µm /2.3 µm for the biconic
surface model corneal front/back surface. We feel that this fit error is quite low, indicating
that we included only ‘normal cases’ without corneal pathologies in our study. However,
this also makes it clear that the fit error is systematically larger for the corneal back surface
as compared to the corneal front surface, which might be due to the fact that the back
surface is always imaged through the front surface as a refracting element and irregularities
at the corneal front surface may, therefore, affect the back surface measurement.

In conclusion, this study shows a strategy for fitting a conoid or biconic model surface
to the anterior segment OCT measurement data of the corneal front and back surface and
for assessing the robustness of the surface fit for both surface models and the corneal front
and back surface. Instead of using standard techniques based on evaluating a sequence
of repeat measurements, we extracted the uncertainties of the characteristic surface pa-
rameters such as radii of curvature and asphericity in both cardinal meridians and the
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orientation of the flat meridian (astigmatic axis) as metrics for robustness by bootstrapping
the fit error. However, comparative studies in the future would be needed to validate
whether bootstrapping of the fit error of one single examination yields equivalent results
for uncertainties of characteristic surface parameters or surface fit robustness as compared
to the evaluation of repeat measurements.
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