17 research outputs found

    Physicochemical behaviour of artificial lime stabilised sulfate bearing cohesive soils

    Get PDF
    Soil stabilisation is a useful civil engineering technique that enables the insitu material to be used as part of an engineered structure. Stabilised layers are used in road foundation; working platforms and for slope stabilisation and sea defences. Chemical stabilisation involves the use of a hydraulic binder (and sometimes additional pozzolans). Commonly, quicklime (CaO) or slaked-lime (Ca(OH)2) is used. On mixing into the ground, this reacts with the aluminosilicates of the clay fraction, reducing its overall water content and plasticity. Further additions increase the insitu pH. Above pH 10.4, the aluminosilicates become soluble in the pore solution. They are then able to form a range of insoluble mineral hydrates which constitute a cementitious matrix. This results in both an increase in mechanical strength and a decrease in dimensional stability. If the insitu material contains sulfur bearing mineralogies, these can react with the hydraulic binder and the aluminosilicates to form expansive minerals. If this occurs after the initial setting and hardening of the stabilised layer has occurred, it can lead to severe dimensional instability and mechanical weakening. This is termed sulfate heave and the principal agent of this heave is a hydrous calcium sulfoaluminate hydrate, ettringite (AFt). The fundamental processes of ettringite formation and associated expansion are little understood in stabilised soils. This research used a range of artificial sulfate bearing, lime stabilised blended soil samples subject to two immersion tests used for material suitability assessment in the UK. The physicochemical response (in terms of dimensional heave and mechanical weakening) was assessed as a function of soil composition and the environmental conditions imposed by the two immersion tests. The fundamental microstructure and phase composition was characterised using a range of analytical techniques (XRD, SEM-EDX, dTGA). The relationship between the observed macro-physical properties and underlying chemical environment and microstructure was explored. Key findings include that the mechanism of ettringite formation and expansion was found to be governed by the fundamental structure of the bulk clay. This explained the greater swell response of the kaolin based soils compared to those of the montmorillonite. The SEM-EDX analysis identified a primitive, Ca-rich, AFt phase termed ‘ball ettringite’, in stabilised soils. This has only relatively recently been reported in studies of cement mortars. Also, small amounts of sulfate in the bulk soil actually increase soil strength. It was suggested that the preferential formation of monosulfate (AFm) plays an important role in this mechanism. The introduction of water to the pore solution is key to the formation of ettringite. This was evidenced by X-Ray CT of the damage caused to soil specimens on immersion, as well as low angle XRD studies of the principal AFt peak. Based on the limited testing undertaken one of the immersion tests (European accelerated volumetic swell test, EN13286-49), appears to be more onerous than the other (UK CBR linear swell test, BS1924-2). Please note: images reprodouced from other works have been removed from the online version, but can be seen in the original typescript version

    Physicochemical behaviour of artificial lime stabilised sulfate bearing cohesive soils

    Get PDF
    Soil stabilisation is a useful civil engineering technique that enables the insitu material to be used as part of an engineered structure. Stabilised layers are used in road foundation; working platforms and for slope stabilisation and sea defences. Chemical stabilisation involves the use of a hydraulic binder (and sometimes additional pozzolans). Commonly, quicklime (CaO) or slaked-lime (Ca(OH)2) is used. On mixing into the ground, this reacts with the aluminosilicates of the clay fraction, reducing its overall water content and plasticity. Further additions increase the insitu pH. Above pH 10.4, the aluminosilicates become soluble in the pore solution. They are then able to form a range of insoluble mineral hydrates which constitute a cementitious matrix. This results in both an increase in mechanical strength and a decrease in dimensional stability. If the insitu material contains sulfur bearing mineralogies, these can react with the hydraulic binder and the aluminosilicates to form expansive minerals. If this occurs after the initial setting and hardening of the stabilised layer has occurred, it can lead to severe dimensional instability and mechanical weakening. This is termed sulfate heave and the principal agent of this heave is a hydrous calcium sulfoaluminate hydrate, ettringite (AFt). The fundamental processes of ettringite formation and associated expansion are little understood in stabilised soils. This research used a range of artificial sulfate bearing, lime stabilised blended soil samples subject to two immersion tests used for material suitability assessment in the UK. The physicochemical response (in terms of dimensional heave and mechanical weakening) was assessed as a function of soil composition and the environmental conditions imposed by the two immersion tests. The fundamental microstructure and phase composition was characterised using a range of analytical techniques (XRD, SEM-EDX, dTGA). The relationship between the observed macro-physical properties and underlying chemical environment and microstructure was explored. Key findings include that the mechanism of ettringite formation and expansion was found to be governed by the fundamental structure of the bulk clay. This explained the greater swell response of the kaolin based soils compared to those of the montmorillonite. The SEM-EDX analysis identified a primitive, Ca-rich, AFt phase termed ‘ball ettringite’, in stabilised soils. This has only relatively recently been reported in studies of cement mortars. Also, small amounts of sulfate in the bulk soil actually increase soil strength. It was suggested that the preferential formation of monosulfate (AFm) plays an important role in this mechanism. The introduction of water to the pore solution is key to the formation of ettringite. This was evidenced by X-Ray CT of the damage caused to soil specimens on immersion, as well as low angle XRD studies of the principal AFt peak. Based on the limited testing undertaken one of the immersion tests (European accelerated volumetic swell test, EN13286-49), appears to be more onerous than the other (UK CBR linear swell test, BS1924-2). Please note: images reprodouced from other works have been removed from the online version, but can be seen in the original typescript version

    A thermo-kinetic investigation on the thermal degradation of polyvinyl chloride in the presence of magnetite and hematite

    Get PDF
    Electric arc furnace dust (EAFD) which is accumulated in large amounts world-wide contains hematite (Fe2O3) and significant quantities of magnetite (Fe3O4). Waste polyvinyl chloride (PVC) also poses a great environmental threat aside to accumulated EAFD. Both of these wastes have shown a great potential for their co-thermal treatment for metal extraction, thus minimising their environmental footprint. Herein, an investigation on the thermal degradation behaviour, reaction products, thermodynamics and the decomposition kinetics of PVC and its stoichiometric mixtures with Fe3O4 and Fe2O3 was conducted using non-isothermal thermogravimetric scans. The kinetic data suggests a significant increase in the average activation energy of PVC de-hydrochlorination from 122.6 ± 24.2 kJ/mol (pure PVC) to 177.0 ± 28.0 and 199.0 ± 77.0 kJ/mol when stoichiometric quantities of Fe3O4 and Fe2O3 were mixed with PVC. The inhibiting effect of both Fe3O4 and Fe2O3 on the degradation of PVC might be assigned to the capturing of emitted gaseous HCl which is known for its catalytic effect. This result suggests that EAFDs containing both Fe3O4 (in large amounts) and Fe2O3 can have an inhibiting effect on the de-hydrochlorination of PVC resulting in longer processing times or the requirement of higher processing temperatures for achieving reasonable reaction rates

    Thermodynamic, pyrolytic, and kinetic investigation on the thermal decomposition of polyvinyl chloride in the presence of franklinite

    Get PDF
    Thermal co-treatment of Electric Arc Furnace Dust (EAFD) and polyvinyl chloride (PVC) may provide a viable route for reprocessing these hazardous materials within the circular economy. To develop and optimise a commercial treatment process, the complex mechanistic pathway resulting from the reaction of these two wastes must be understood. Franklinite (ZnFe2O4) is a major zinc containing phase in EAFD and to date, little work has been undertaken on the decomposition of PVC in its presence. Herein, we present a thermodynamic, pyrolytic, and kinetic study of PVC degradation in the presence of ZnFe2O4. It was found that, ZnFe2O4 decomposed to its associated halides. Additionally, the kinetics data confirmed the catalytic activity of ZnFe2O4, dropping the de-hydrochlorination onset temperature of PVC from 272 to 235 °C. The distribution of the activation energy with conversion suggests the presence of several competitive reactions each with a different energy barrier. In such a case, reaction channelling can take place leading to selective zinc chlorination.Moreover, since the reduction of Fe2O3 is slow at low temperatures, it is recommended to operate at a temperature as low as 235 °C which can promote the chlorination selectivity towards zinc leaving iron bearing compounds in their stable form (Fe2O3)

    S-band elliptical–cylindrical cavity resonator for material processing

    Get PDF
    The development of an elliptical–cylindrical cavity for microwave thermal processing of materials at high electric field strengths is reported. The design methodology based on numerical modeling is validated by experimental measurements. The system can create high-power densities in the heated phases, excellent treatment uniformity, and stable operation without degenerated modes or polarization rotation as suffered by other commonly used circular resonator cavities

    Microwave processing of cement and concrete materials - towards an industrial reality?

    Get PDF
    Each year a substantial body of literature is published on the use of microwaves to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background: In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). Findings: Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001). Interpretation: In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research
    corecore