6,079 research outputs found

    Soluble Fermentable Dietary Fibre (Pectin) Decreases Caloric Intake, Adiposity and Lipidaemia in High-Fat Diet-Induced Obese Rats

    Get PDF
    Funding: This work was funded by the Scottish Government Rural and Environment Science and Analytical Services Division. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Dose-dependent effects of a soluble dietary fibre (pectin) on food intake, adiposity, gut hypertrophy and gut satiety hormone secretion in rats

    Get PDF
    Acknowledgments We thank Donna Wallace and Animal House staff at the Rowett Institute of Nutrition and Health for the daily care of experimental rats and for the body weight, food intake and MRI measurements.Peer reviewedPublisher PD

    Different types of soluble fermentable dietary fibre decrease food intake, body weight gain and adiposity in young adult male rats

    Get PDF
    We thank Donna Wallace and the Rowett Animal House staff for the daily care of experimental rats, body weight and food intake measurements and MRI scanning, Vivien Buchan and Donna Henderson of the Rowett Analytical Department for proximate analyses and SCFA GC, and Andrew Chappell for conducting the beta-glucan analysis. This research was funded by the Scottish Government’s Rural and Environment Science and Analytical Services Division.Peer reviewedPublisher PD

    Undernutrition and stage of gestation influence fetal adipose tissue gene expression

    Get PDF
    Funded by the Scottish Government’s Rural and Environment Science and Analytical Services Division (RESAS), including the Strategic Partnership for Animal Science Excellence (SPASE) and the U.S. National Institutes of Health (HD045784). None of the authors had any financial or personal conflicts of interest.Peer reviewedPostprin

    Complex functional surface design for additive manufacturing

    Get PDF
    This paper presents a new methodology for the creation of advanced surfaces which can be produced by Additive Manufacturing (AM) methods. Since there is no cost for enhanced complexity, AM allows for new capabilities in surface design. Micro-scale surface features with varying size, shape and pitch can be manufactured by Two-Photon Polymerisation (2PP). Computer-Aided Design (CAD) tools allowing for this variation to be incorporated into the surface design are only just emerging. With the presented methodology, surfaces are created from a single feature design. Variation is applied to the surface features through algorithmic design tools, allowing for arrays of hundreds of unique features can be created by non-CAD experts. The translation of these algorithmic expressions from CAD to a physical surface is investigated. Using the proposed methodology, 2PP is used to create quasi stochastic surfaces for the purpose of enhancing the biointegration of medical implants against current state-of-the-art

    Ovine prenatal growth-restriction and sex influence fetal adipose tissue phenotype and impact postnatal lipid metabolism and adiposity in vivo from birth until adulthood

    Get PDF
    Funding: This work was funded by the Scottish Government’s Rural and Environmental Science and Analytical Services Division (RESAS) including the Strategic Partnership for Animal Science. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Gas Kinematics on GMC scales in M51 with PAWS: cloud stabilization through dynamical pressure

    Get PDF
    We use the high spatial and spectral resolution of the PAWS CO(1-0) survey of the inner 9 kpc of the iconic spiral galaxy M51 to examine the effect of gas streaming motions on the star-forming properties of individual GMCs. We compare our view of gas flows in M51 -- which arise due to departures from axi-symmetry in the gravitational potential (i.e. the nuclear bar and spiral arms) -- with the global pattern of star formation as traced by Halpha and 24\mu m emission. We find that the dynamical environment of GMCs strongly affects their ability to form stars, in the sense that GMCs situated in regions with large streaming motions can be stabilized, while similarly massive GMCs in regions without streaming go on to efficiently form stars. We argue that this is the result of reduced surface pressure felt by clouds embedded in an ambient medium undergoing large streaming motions, which prevents collapse. Indeed, the variation in gas depletion time expected based on the observed streaming motions throughout the disk of M51 quantitatively agrees with the variation in observed gas depletion time scale. The example of M51 shows that streaming motions, triggered by gravitational instabilities in the form of bars and spiral arms, can alter the star formation law; this can explain the variation in gas depletion time among galaxies with different masses and morphologies. In particular, we can explain the long gas depletion times in spiral galaxies compared to dwarf galaxies and starbursts. We suggest that adding a dynamical pressure term to the canonical free-fall time produces a single star formation law that can be applied to all star-forming regions and galaxies, across cosmic time.Comment: 28 pages, 14 figures, accepted for publication in Ap

    The PdBI Arcsecond Whirlpool Survey (PAWS): Multi-phase cold gas kinematic of M51

    Get PDF
    The kinematic complexity and the favorable position of M51 on the sky make this galaxy an ideal target to test different theories of spiral arm dynamics. Taking advantage of the new high resolution PdBI Arcsecond Whirlpool Survey (PAWS) data, we undertake a detailed kinematic study of M51 to characterize and quantify the origin and nature of the non-circular motions. Using a tilted-ring analysis supported by several other archival datasets we update the estimation of M51's position angle (PA=(173 +/- 3) deg) and inclination (i=(22 +/- 5) deg). Harmonic decomposition of the high resolution (40 pc) CO velocity field shows the first kinematic evidence of an m=3 wave in the inner disk of M51 with a corotation at R(CR,m=3)=1.1 +/- 0.1 kpc and a pattern speed of Omega_p(m=3) = 140 km/(s kpc). This mode seems to be excited by the nuclear bar, while the beat frequencies generated by the coupling between the m=3 mode and the main spiral structure confirm its density-wave nature. We observe also a signature of an m=1 mode that is likely responsible for the lopsidedness of M51 at small and large radii. We provide a simple method to estimate the radial variation of the amplitude of the spiral perturbation (Vsp) attributed to the different modes. The main spiral arm structure has =50-70 km/s, while the streaming velocity associated with the m=1 and m=3 modes is, in general, 2 times lower. Our joint analysis of HI and CO velocity fields at low and high spatial resolution reveals that the atomic and molecular gas phases respond differently to the spiral perturbation due to their different vertical distribution and emission morphology.Comment: 42 pages, 12 figures, accepted for publication in Ap

    A Comparative Study of Giant Molecular Clouds in M51, M33 and the Large Magellanic Cloud

    Get PDF
    We compare the properties of giant molecular clouds (GMCs) in M51 identified by the Plateau de Bure Interferometer Whirlpool Arcsecond Survey (PAWS) with GMCs identified in wide-field, high resolution surveys of CO emission in M33 and the Large Magellanic Cloud (LMC). We find that GMCs in M51 are larger, brighter and have higher velocity dispersions relative to their size than equivalent structures in M33 and the LMC. These differences imply that there are genuine variations in the average mass surface density of the different GMC populations. To explain this, we propose that the pressure in the interstellar medium surrounding the GMCs plays a role in regulating their density and velocity dispersion. We find no evidence for a correlation between size and linewidth in any of M51, M33 or the LMC when the CO emission is decomposed into GMCs, although moderately robust correlations are apparent when regions of contiguous CO emission (with no size limitation) are used. Our work demonstrates that observational bias remains an important obstacle to the identification and study of extragalactic GMC populations using CO emission, especially in molecule-rich galactic environments.Comment: 25 pages, 11 figures, accepted for publication in ApJ. Uses emulateapj LaTeX macros. For more information on PAWS, further papers and data, see http://www.mpia.de/PAWS

    The PdBI Arcsecond Whirlpool Survey (PAWS): Environmental Dependence of Giant Molecular Cloud Properties in M51

    Get PDF
    Using data from the PdBI Arcsecond Whirlpool Survey (PAWS), we have generated the largest extragalactic Giant Molecular Cloud (GMC) catalog to date, containing 1,507 individual objects. GMCs in the inner M51 disk account for only 54% of the total 12CO(1-0) luminosity of the survey, but on average they exhibit physical properties similar to Galactic GMCs. We do not find a strong correlation between the GMC size and velocity dispersion, and a simple virial analysis suggests that 30% of GMCs in M51 are unbound. We have analyzed the GMC properties within seven dynamically-motivated galactic environments, finding that GMCs in the spiral arms and in the central region are brighter and have higher velocity dispersions than inter-arm clouds. Globally, the GMC mass distribution does not follow a simple power law shape. Instead, we find that the shape of the mass distribution varies with galactic environment: the distribution is steeper in inter-arm region than in the spiral arms, and exhibits a sharp truncation at high masses for the nuclear bar region. We propose that the observed environmental variations in the GMC properties and mass distributions are a consequence of the combined action of large-scale dynamical processes and feedback from high mass star formation. We describe some challenges of using existing GMC identification techniques for decomposing the 12CO(1-0) emission in molecule-rich environments, such as M51's inner disk.Comment: 73 pages, 18 figures, 14 tables, accepted for publication in Ap
    corecore