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Abstract 

Low birthweight is a risk factor for neonatal mortality and adverse metabolic health, both associated with 

inadequate prenatal adipose tissue development. Here we investigated the impact of maternal 

undernutrition on expression of genes regulating fetal perirenal adipose tissue (PAT) development and 

function at gestation days 89 and 130 (term=145d). Singleton fetuses were taken from adolescent ewes 

fed control (C) intake to maintain adiposity throughout pregnancy or undernourished (UN) to maintain 

conception weight but deplete maternal reserves (n=7/group). Fetal weight was independent of maternal 

intake at day 89 but by day 130 fetuses from UN dams were 17% lighter with lower PAT mass containing 

fewer unilocular adipocytes. Relative PAT expression of IGF1, IGF2, IGF2R and peroxisome-

proliferator-activated receptor-gamma (PPARG) mRNA was lower in UN than in C, predominantly at day 

89. Independent of maternal nutrition, PAT gene expression of PPARG, glycerol-3-phosphate 

dehydrogenase, hormone sensitive lipase, leptin, uncoupling protein-1 and prolactin receptor increased 

and IGF1, IGF2, IGF1R, IGF2R decreased between 89 and 130 days. Fatty acid synthase and lipoprotein 

lipase (LPL) mRNAs were not influenced by nutrition or stage of pregnancy. Females had greater LPL 

and leptin mRNA than males, and LPL, leptin and PPARG mRNAs were decreased by UN at day 89 in 

females only.  PAT gene expression correlations with PAT mass were stronger at day 89 than day 130. 

These data suggest that key genes regulating adipose tissue development and function are active from 

mid-gestation when they are sensitive to maternal undernutrition. This leads to reduced fetal adiposity by 

late pregnancy. 
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Introduction 

Prenatal growth restriction leading to low birthweight remains a global health issue and in 2013 

was estimated to impact more than 22 million babies (16%) born, with the highest incidence in Southeast 

Asia and Africa (http://data.unicef.org/nutrition/low-birthweight). Maternal malnutrition involving 

deficits in macro- and micro-nutrients remains the major cause of low birthweight in developing countries 

(http://www.countdown2015mnch.org/documents/2013Report/Countdown_2013-

Update_withprofiles.pdf).  Affected neonates have increased risk of neonatal mortality whereas surviving 

infants have greater risk of life-restricting complications involving stunted growth, poor immune function 

and low educational attainment (Raqib et al. 2007; Longo et al. 2013; Christian et al. 2014). Furthermore, 

low birthweight predicts metabolic syndrome and obesity in adulthood, and these consequences are 

exacerbated if the postnatal environment is nutrient-rich such as occurs in populations undergoing 

economic transition (Jain & Singhal 2012).  Similarly, in agriculturally important mammals (ruminants, 

pigs) there is evidence that maternal undernutrition is the primary determinant of poor prenatal growth, 

with reductions in birthweight dependent on timing, duration and severity of the nutritional insult and age 

and/or parity of the dam (Luther et al. 2005;Wu et al. 2006). For these species low birthweight negatively 

impacts commercially important traits including neonatal survival and carcass fat content, with decreased 

financial returns for the producer (Greenwood et al. 2010; Nissen & Oksbjerg 2010). 

In precocial mammals appropriate prenatal adipose tissue development is essential for adequate 

thermoregulation at birth to ensure immediate survival. In addition, adipose tissue is central to energy 

metabolism throughout the life-course (Klaus 2004; Galic et al. 2010), and derangements in its early 

development potentially impact body composition in later life. Accordingly, adipose tissue is considered 

to be a key target of developmental programming by maternal and/or fetal undernutrition (Sarr et al. 

2012; Lukaszewski et al. 2013). In humans and sheep adipose tissue is present from mid-gestation 

onwards with most fat deposition occurring in the final third of pregnancy predominately in the perirenal 

region (Moragas & Torán 1983; Gemmell & Alexander 1978). At mid-gestation perirenal adipose tissue 

(PAT) is characterised by rapid multiplication of precursor cells or pre-adipocytes (Pope et al. 2014) and 
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by late pregnancy this fat depot contains cells with the appearance of both white (unilocular) and brown 

(multilocular) adipocytes (Gemmell & Alexander 1978); these stages thereby reflect key windows in fetal 

fat development. In adults unilocular adipocytes are the major site of lipid storage and leptin secretion, 

and similarly in late gestation ovine fetuses plasma leptin correlates with unilocular fat mass when 

maternal nutrient intake is at or above maintenance requirements (Mühlhäusler et al. 2002). In contrast, 

multilocular adipocytes are predominantly associated with young animals; they are mitochondria-rich and 

play an essential role in neonatal thermogenesis via a unique uncoupling protein (UCP1) that burns fatty 

acids and glucose to release heat (Symonds 2013). Maternal undernutrition via its negative impact on 

fetal nutrient availability may alter relative proportions of white and brown fat in the fetus, with 

implications for subsequent survival and body composition, but this hypothesis has not been tested. 

Published studies have examined selected molecular markers of adipose tissue growth, differentiation and 

function in PAT of late gestation sheep fetuses whose mothers were undernourished during specific 

windows of gestation, but no clear consensus emerged regarding the impact of nutrition on fetal growth, 

PAT depot mass or gene expression (Symonds et al. 1998; Bispham et al. 2003; Budge et al. 2004; Lie et 

al. 2013).  

Here we address this deficit by examining PAT gene expression at both mid and late pregnancy in 

a sheep model where maternal undernutrition throughout gestation reduced fetal weight, carcass fat 

content and PAT mass by late pregnancy (Luther et al. 2007). We examined genes involved in adipocyte 

proliferation and differentiation, namely IGF1, IGF2, IGF1R, IGF2R (Holly et al. 2006; Kleiman et al. 

2013), and peroxisome-proliferator-activated receptor-gamma (PPARG) a transcriptional regulator 

playing a central role in adipocyte differentiation as well as co-ordinating genes involved in lipid 

deposition and metabolism (Semple et al. 2006). These include lipogenic genes such as lipoprotein lipase 

(LPL), which enhances fatty acid uptake into adipocytes, fatty acid synthase (FASN), which catalyses 

fatty acid synthesis, and glycerol-3-phosphate dehydrogenase (G3PDH), which is involved in 

glyceroneogenesis, and lipolytic genes such as hormone sensitive lipase (HSL), which is involved in 

hydrolysis of stored triglycerides to release non-esterified fatty acids (NEFA). We also measured gene 
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expression for leptin, because previous studies suggest it reflects the proportion of white adipose tissue in 

the fetus (Yuen et al. 2003), and for UCP1 and prolactin receptor (PRLR) as markers of brown adipose 

tissue function (Pope et al. 2014). Accordingly, a secondary objective herein was to quantify the 

proportion of unilocular and multilocular cells in PAT of fetuses from undernourished versus optimally-

nourished dams.  

This study tested the hypothesis that molecular markers of fetal adipose tissue development are 

temporally sensitive to maternal undernutrition and are associated with the resulting late gestation lean 

fetal phenotype.     

 

Materials and Methods 

Animals and sample derivation 

All procedures were licensed under the UK Animals (Scientific Procedures) Act 1986 and 

approved by local Ethical Review Committee. Day 4 embryos, recovered from adult ewes inseminated by 

a single sire, were transferred synchronously in singleton into adolescent recipients, as described 

previously (Wallace et al. 1997). Details of genotype, age, weight and adiposity of the animals, together 

with full details of experimental design and diet composition have been presented previously (Luther et 

al. 2007). Briefly, recipients of equivalent age, weight and adiposity were individually offered optimal 

control (C) or low quantity of the same complete diet (~0.7 x C intake) following embryo transfer.  The C 

dietary level aimed to maintain normal maternal adiposity throughout gestation (promoting liveweight 

gain ~50g/day) and to provide 100% nutrient requirements of the adolescent sheep carrying a singleton 

fetus according to stage of pregnancy (AFRC 1993). The low dietary intake was calculated to maintain 

maternal liveweight at the initial value, thereby depleting maternal reserves throughout gestation as she 

attempts to meet the nutrient requirements of the developing conceptus: these dams were considered 

undernourished (UN). The level of feed offered was reviewed three-times weekly and adjusted as 

appropriate according to weekly bodyweight change data.  Maternal body condition was subjectively 

assessed on a five-point scale fortnightly by the same highly experienced operator (1 = emaciated, 5 = 
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obese; Russel et al. 1969). This score provides an external measure of adiposity, and is highly correlated 

with maternal carcass fat determined by chemical analysis (Wallace et al. 1999).  Ultrasonography at 45d 

gestation revealed 28 viable pregnancies.         

Immediately before necropsy maternal venous blood was sampled and the plasma used to confirm 

metabolic status: namely glucose, insulin and NEFA concentrations. Ewes were killed on either d89 or 

130 gestation (n=7/ group/ stage; term =145 days) by i.v. sodium pentobarbitone (20ml Euthesate; 200mg 

pentobarbitone/ml; Willows Francis Veterinary, Crawley, UK) and exsanguination.  The gravid uterus 

was weighed and opened, and fetal blood sampled by cardiac puncture immediately before administering 

intracardiac sodium pentobarbitone (3ml Euthesate); this plasma was analysed for glucose and insulin. 

The fetus was dried and weighed. PAT was weighed and samples either snap-frozen in isopentane chilled 

by liquid nitrogen and stored at -80oC until gene expression analysis (d89 and 130) or fixed in 10% 

neutral buffered formalin and embedded in paraffin for histological quantification of adipocytes (d130 

only). Intact placentomes were dissected and weighed. The maternal carcass was weighed to confirm the 

effectiveness of nutritional treatments. The fat content of fetal carcasses was determined by chemical 

analysis (Wallace et al. 2006).  

  

Plasma analyses 

Maternal plasma NEFA was measured using an automated clinical analyzer with kits supplied by 

the manufacturer (Labmedics, Manchester, UK), with variation between duplicates <5%. Maternal and 

fetal insulin was measured by radioimmunoassay (MacRae et al. 1991; duplicate variation <10%) and 

glucose by dual-biochemistry analyser (YSI model 2700, Yellow Springs, OH, USA; duplicate variation 

<3%). 

 

Fetal adipocyte histology 

The method used to quantify the density of unilocular and multilocular cells in fetal PAT matched 

that of Mühlhäusler et al. (2002). Sections were cut (5µm), dried overnight, stained with haematoxylin 
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and eosin and viewed at 200x magnification using a Leica microscope. Twelve separate complete fields 

of view per animal, ~1mm apart on a single section, were captured by digital camera and the images 

analysed using Image-Pro Plus (version 4.5.1, Media Cybernetics, Inc., Silver Spring, MD, USA). 

Standard point counting techniques (Weibel 1979) were employed: a standard grid was used to determine 

the adipose tissue component (i.e. unilocular or multilocular cell) falling below each of 35 grid points per 

image, thus totalling 420 points per animal. The volume density (Vd) of each cell type was calculated as 

Vd=N/T, where N is the number of points falling on unilocular or multilocular cells, and T is the total 

number of points counted. The total mass of the unilocular or multilocular component was calculated by 

multiplying the Vd of each component by the PAT mass. Relative unilocular (or multilocular) fat mass 

(g/kg fetus) was calculated by dividing by fetal weight.    

       

Quantitative real-time reverse transcription-polymerase chain reaction analysis 

Messenger RNA for genes involved in adipocyte proliferation (IGF1, IGF2, IGF1R, IGF2R) 

differentiation and function (PPARG, G3PDH, LPL, FAS, HSL, UCP1, PRLR, leptin) in fetal PAT were 

measured by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) using 

probe and primer sets for sheep-specific sequences of these genes as previously described (Matsuzaki et 

al. 2006; Wallace et al. 2014). Briefly total RNA was extracted from 100mg frozen PAT using RNeasy 

Lipid Tissue Mini Kit (Qiagen, Crawley, West Sussex, UK). The quality and quantity of total RNA were 

determined via capillary electrophoresis using an Agilent 2100 Bioanalyzer (Agilent Technologies, 

Wilmington, DE, USA). Real-time RT-PCR reagents, probes, and primers were purchased from and used 

as recommended by Applied Biosystems (Warrington, UK). For each sample 54ng total RNA was 

subjected to reverse transcription (RT) in triplicate to generate first-strand cDNA using Taqman Reverse 

Transcription Reagents and Multiscribe Reverse Transcriptase. Polymerisation and amplification 

reactions for each RT sample were performed in duplicate in 20µl final volume using the Applied 

Biosystems 7500 Fast Real-Time PCR system. Quantification was performed using a relative standard 

curve method with serial dilutions of reference standard cDNA generated from RNA pooled from PAT of 
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control and undernourished fetuses (3/stage/group). Individual mRNA levels of genes of interest were 

expressed relative to the sample’s own internal 18S RNA, determined using human 18S Pre-developed 

TaqMan Assay Reagents. Samples were randomised to ensure that each nutritional treatment and sex was 

represented in each of four 96-well plates. Also a quality control sample generated from the above RNA 

pool was run on each plate and used to calculate inter- and intra-assay coefficients of variation (cov). 

Intra-plate cov varied from 3.9 to 6.5 % (mean±sem, 5.3±0.23) while inter- plate cov varied from 0.76 to 

10.76 % (7.1±0.80).   

 

Statistical analysis 

The power calculation carried out for the original study was based on the prediction that maternal 

undernutrition would impact fetal growth by the late gestation time-point. Accordingly seven animals per 

group were selected so that the experiment would have 80% power to detect (at 5% significance) a 20% 

change in fetal weight of 870g assuming animal variability of 515g. This was based on fetal weight data 

obtained from control-fed adolescent ewes of the same genotype, with identical paternal genetics and at 

the same stage of gestation. Statistical comparisons were made using Minitab (Minitab 16, Minitab Inc., 

State College, PA). ANOVA (general linear model, GLM) was used to determine effects of maternal 

nutrition and gestational stage, and their interaction, on maternal and fetal phenotype (Table 1) and on 

fetal PAT gene expression (Table 3). Post-hoc comparisons used Tukey’s method when one of the main 

effects or their interaction was significant. We had no control over the sex of the embryo/fetus and 

accordingly the study was not originally powered to examine gender effects; however, sex-specific effects 

were apparent upon initial examination of the data and so we additionally included sex as a factor in a 

second 3-factor ANOVA (nutrition*stage*sex, and all possible interactions) and present relevant findings 

separately (text and Figure 2).  Paired Student’s t tests were used to determine differences in adipocyte 

cell type at d130 (Table 2). Pearson product-moment correlation was used to explore relationships 

between variables where indicated. Values are group mean ± sem throughout, statistical significance was 

taken as P<0.05 and a trend was indicated where P=0.06-0.1. 
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Results 

Maternal and fetal phenotype  

By design maternal liveweight (42.9±0.41kg) and adiposity score (2.3±0.02) were equivalent 

between groups at embryo transfer and thereafter dams receiving a control (C) intake maintained their 

initial adiposity score until necropsy at gestational d89 or 130 (Table 1). In contrast, the external adiposity 

score of underfed (UN) dams gradually decreased, with the changes equivalent to average losses of 6.2 

and 8.8% body fat at d89 and 130, respectively (Russel et al. 1969). Maternal liveweight and carcass 

mass had diverged by d89, with the difference between nutritional groups increased by d130. The 

relatively catabolic state of UN dams was mirrored by low plasma insulin and glucose, and by late 

pregnancy plasma NEFA was increased in UN versus C dams.  

Fetal weight was independent of maternal dietary intake at d89 but by d130 fetuses from UN dams 

were 17% lighter than those in C dams (Table 1), although brain growth was preserved as indicated by 

higher fetal-weight specific brain weight (12.0±0.39 vs. 9.9±0.35g/kg, P<0.01) as well as greater brain: 

liver weight ratios (Table 1). Fetal plasma insulin and glucose were independent of maternal nutrition at 

d89 but there were trends towards lower insulin and glucose in the UN group at d130. Total placentome 

weight was not affected by maternal nutrition at either time-point (Table 1). 

 

Fetal adiposity  

Absolute PAT mass increased >12-fold between gestational d89 and 130 and was lower in fetuses 

of UN dams at the late gestation time-point (Table 1). Moreover, PAT mass was positively related to fetal 

weight at both gestational ages (r=0.632, P=0.015 and r=0.738, P=0.003, n=14 at d89 and 130) and 

accordingly fetal weight-specific PAT mass was also negatively impacted by maternal undernutrition. At 

gestation d130, both absolute and fetal weight-specific unilocular fat cell mass was lower in fetuses from 

UN versus C dams (Table 2), but there were no significant effects of nutrition on multilocular cell mass. 

Representative images are presented in Figure 1. The relative proportion (volume density) of unilocular 
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versus multilocular cells was equivalent within the C group but UN fetuses had more multilocular than 

unilocular cells (P<0.05). Irrespective of maternal nutrition, absolute and relative fetal unilocular fat mass 

was positively associated with carcass fat percentage (n=14; r=0.806, P=0.001 and r=0.763, P=0.001, 

Figure 1c). Multilocular fat cell mass was unrelated to fetal carcass fat percentage, but total multilocular 

fat mass was positively associated with fetal weight (r=0.605, P=0.022, n=14 Figure 1d), primarily due to 

the UN group (r=0.787, P=0.036, n=7).  

  

Perirenal fat gene expression 

The 2-factor ANOVA revealed an increase in PPARG mRNA expression in PAT as gestation 

progressed, while the stage x nutrition interaction reflected lower PPARG mRNA abundance in the UN 

group at gestational d89 but not at d130 (Table 3). G3PDH and HSL mRNA expression increased 2-3 fold 

between d89 and 130 irrespective of maternal nutrition, whereas LPL and FAS mRNA levels were 

independent of both gestational age and nutrition. UCP1 and PRLR mRNA were virtually undetectable at 

d89 and independent of maternal nutrition at d130. In contrast, gene expression for IGF1, IGF2 and their 

receptors was robustly greater at d89 than at d130, and  these genes were impacted by maternal nutrition, 

largely due to lower expression in UN fetuses at d89. PAT leptin mRNA was influenced by stage of 

pregnancy (d130>89), with a trend for lower expression in UN fetuses.  

In view of the differential in fetal weight and PAT mass between the two stages of pregnancy and 

the dominant influence of gestational age on mRNA abundance of the majority of genes quantified, the 

relationships between fetal weight, PAT mass, metabolic status and adipose tissue gene expression were 

examined separately for the d89 and d130 groups (Table 4). At d89, the relative expression of genes 

involved in adipocyte differentiation and function, namely PPARG, G3PDH, LPL, FASN, HSL, leptin and 

UCP1, were positively related to both absolute and fetal weight-specific PAT mass, but unrelated to fetal 

weight (Table 4, Figure 3). Of the genes putatively involved in adipocyte proliferation, only IGF1 was 

weakly positively related to fetal weight-specific PAT mass. Also at d89, fetal plasma glucose was 

unrelated to abundance of any of the genes measured but fetal plasma insulin was modestly negatively 
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associated with LPL, FASN, HSL and UCP1 mRNA expression. In contrast, at gestational d130 there 

were relatively weak negative relationships between fetal size, absolute PAT mass and gene expression 

for G3PDH and HSL (Table 4). Fetal weight-specific PAT mass was positively associated with UCP1 

gene expression and was the only relationship detected at both stages of gestation. UCP1 gene expression 

and carcass fat percentage were positively associated at d130 (r=0.559, n=14, P=0.039). Fetal plasma 

glucose was positively related to leptin and all four IGF system genes at d130 and positive relationships 

were evident between fetal plasma insulin and both leptin and IGF1 gene expression.  

PRLR gene expression was unrelated to fetal weight, adiposity or metabolic status at both stages 

of gestation (not shown). Similarly PRLR mRNA abundance was not related to expression of any of the 

other genes measured in PAT. The relationships between the other 11 genes measured at gestational d89 

and 130 are detailed in Table 5. At d89, robust positive relationships were evident between all possible 

comparisons (n=21) of PPARG, G3PDH, LPL, FASN, HSL, leptin and UCP1 mRNA expression. At 

d130, similar relationships were evident between PPARG, G3PDH, LPL and HSL but none of these genes 

was related to FASN, UCP1 or leptin expression and the latter genes were not correlated with each other.  

Similarly, IGF1 and IGF2 gene expression was positively related to the various genes involved in 

adipocyte differentiation and function at d89 (reaching significance in 13 of 14 comparisons, Table 5) but 

was unrelated to these genes at d130. Selected examples of these relationships are detailed in Figure 4. 

 

Adiposity and gene expression in relation to fetal sex 

An effect of sex per se on absolute or fetal weight-specific PAT mass was not detected at either 

gestational d89 or 130 (P>0.3, data not shown). In late gestation, females had relatively more unilocular 

fat mass than males (3.2±0.34 versus 2.4±0.32g/kg) but this was not statistically significant (P=0.143). In 

relation to PAT gene expression, when sex was included as an additional factor in the ANOVA, females 

overall had greater leptin expression than males (P=0.001, Figure 2a) and the impact of maternal nutrition 

as well as gestational age was significant (P=0.029 and P=0.001, respectively). Sex also influenced PAT 

LPL gene expression (females>males, Figure 2b) and gene expression for both leptin and LPL was lower 
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in female but not male UN versus C fetuses at gestational d89 only (Figure 2a, b). Although an effect of 

sex was not detected for any of the other genes measured, PPARG mRNA expression was lower in UN 

versus C female fetuses at d89 (nutrition x stage x gender interaction, P=0.011).   

  

Discussion 

This study reveals that a number of genes regulating prenatal adipose tissue development and 

function are expressed by mid-gestation when they are already sensitive to maternal undernutrition, and 

that their expression levels are markedly changed by late gestation. The early molecular sensitivity to 

poor nutrient supply may underlie the reduced fetal adiposity and altered proportions of unilocular and 

multilocular adipocytes evident by late pregnancy. In addition, the study indicates that some sex-specific 

differences in adipose tissue gene expression may emerge in utero. 

 

Fetal growth and adiposity 

Limiting maternal intake throughout gestation in young adolescent sheep results in gradual 

depletion of maternal reserves and slowing of fetal growth. By late gestation the fetuses are lighter and 

leaner than optimally-nourished controls reflected by lower carcass fat and reduced fetal PAT mass 

(Luther et al. 2007). Herein, we demonstrate that the PAT mass reduction is primarily due to lower 

numbers of unilocular adipocytes, suggesting that limiting maternal and hence fetal nutrient supply 

restricts the development of cells primarily involved in fat storage rather than the cells involved in 

neonatal thermogenesis. The positive relationship between PAT unilocular fat mass and carcass fat 

content implies a similar scenario is likely to operate throughout the fetus leading to a lean body 

phenotype. However, while the impact of maternal undernutrition on weight at birth is statistically 

significant in our model the effect is modest and previous studies using an equivalent prenatal nutritional 

insult have failed to detect persistent influences on postnatal growth or glucose metabolism up to 6 

months of age (Wallace et al. 2010, 2012).  
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In this study a positive correlation between multilocular fat mass and fetal weight was observed 

within the undernourished group and furthermore those fetuses had more multilocular than unilocular 

adipocytes, which may be indicative of developmental delay. Nevertheless relative to the control group 

maternal undernutrition did not influence absolute or relative multilocular cell mass overall, suggesting 

that had these pregnancies progressed to term neonatal thermogenesis might not have been severely 

compromised. Indeed in two such studies no neonatal mortality occurred in offspring of undernourished 

dams following spontaneous delivery at term (Wallace 2011). 

 In our undernourished paradigm we restrict maternal intake throughout gestation rather than 

during specific “windows” as this reflects the most common scenario in human pregnancy. We also focus 

on adolescents because insufficient gestational weight gain (a proxy for maternal undernutrition) in this 

age group predicts low birthweight (Hediger et al. 1989; Scholl et al. 1991; Stevens-Simon & 

McAnarney 1992) and in developing countries where malnutrition predominates high pregnancy rates are 

commonplace in adolescents. As such there is a lack of directly comparable data in other precocial animal 

models.  

Previous studies of adipose tissue development have largely involved adult ewes undernourished 

during discrete windows of gestation, with little consensus on the impact on fetal weight or PAT mass 

(Symonds et al. 1998; Bispham et al. 2003; Budge et al. 2004; Lie et al. 2013). None of these studies 

involving undernutrition quantified adipocyte cell populations, but conversely when fetal nutrient supply 

in normal late gestation pregnancies was increased by a 10-day intrafetal glucose infusion, the unilocular 

fat mass was enhanced and the size of the dominant lipid locule was positively correlated with fetal 

glucose concentrations (Mühlhäusler et al. 2005). The latter study and the data herein suggest that 

unilocular adipocytes within the PAT depot are sensitive to the prevailing nutrient supply in utero and 

when this supply is compromised multilocular cells predominate.  

 

Perirenal fat gene expression: ontogeny and impact of undernutrition 
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The design herein allowed us to examine for the first time both the ontogeny of fetal PAT gene 

expression and the impact of maternal undernutrition. At mid-gestation when the adipose tissue first 

appears and begins to replicate, the abundance of all four IGF system genes was high, commensurate with 

the roles of IGF1 and IGF2 in adipocyte proliferation and differentiation (Holly et al. 2006; Kleiman et 

al. 2013). Moreover at this early stage of PAT development the relative gene expression of all four IGF 

system genes was already lower in undernourished fetuses, prior to any significant reduction in fetal body 

weight or PAT mass. These observations are consistent with attenuated IGF-mediated adipocyte 

proliferation and differentiation around mid-gestation most likely underlying the reduced mass and 

structural characteristics of PAT observed in the undernourished fetuses in late gestation. Although the 

consequences for postnatal body composition have not been established in this model, it is likely that the 

reduction in adipocyte number translates into increased susceptibility for cellular hypertrophy in later life 

(Heilbronn et al. 2004), particularly if the animal is exposed to a nutrient-rich diet postnatally.   

IGF1 regulates transcription factors including PPARG (Scavo et al. 2004) and attenuated local 

IGF secretion within the developing PAT of undernourished fetuses may underlie the lower expression of 

PPARG at mid-gestation, with consequences for the progression of adipocyte differentiation and function. 

From the present data it is unlikely that deficits in glucose supply directly influence PPARG expression 

because fetal plasma glucose was not different between groups in mid-gestation and no correlation 

between fetal glucose and PPARG mRNA was observed. In contrast, when maternal nutrition was 

increased in late pregnancy (55% above maintenance), fetal plasma glucose and PAT PPARG mRNA 

were  increased and positively correlated with each other, independent of changes in PAT mass or 

morphology (Mühlhäusler et al. 2007). IGF gene expression was not measured in the latter study but it is 

noteworthy that herein fetal glucose was positively related to IGF system mRNA in late pregnancy.  

Herein, the gene expression of PPARG modestly increased with gestational age. A similar 

ontogenic increase in PPARG expression has recently been reported in normally-growing ovine fetuses 

sampled at either gestational d80 or 140 (Pope et al. 2014), commensurate with its role as a key regulator 

of adipose tissue-specific genes and with the increase in PAT mass as gestation proceeds. Accordingly a 
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marked increase in relative gene expression between mid and late gestation was observed here for 

selected genes involved in lipid deposition, metabolism and signalling (G3PDH, HSL, leptin), whereas 

others involved in fatty acid synthesis and uptake into adipocytes (FASN, LPL) were surprisingly 

independent of gestational age.  

For the genes specific to brown adipose tissue, namely PRLR and UCP1, abundance was 

extremely low in mid-pregnancy and high at late pregnancy in line with their role in promoting adequate 

thermogenesis after birth (Symonds et al. 1998; Pearce et al. 2005). Furthermore, the absence of an effect 

of maternal undernutrition on PRLR and UCP1 gene expression in the present late gestation fetuses 

matched the lack of effect on multilocular adipocyte mass. Conversely, the trend for attenuated PAT gene 

expression in UN fetuses for leptin, a white adipose tissue-specific gene (Yuen et al. 2003), was in line 

with the observed reduction in unilocular cell mass in late gestation. 

Irrespective of the direction of ontogenic change, and with the exception of the aforementioned 

leptin expression, it is noteworthy that none of the other genes measured were impacted only in late 

gestation by maternal undernutrition, indicating that key molecular events underlying the lean fetal 

phenotype in this model originated earlier in gestation. In support we observed robust positive 

correlations between fetal weight-specific PAT mass and genes involved in adipocyte differentiation and 

function at gestational d89 (PPARG, G3PDH, LPL, FASN, HSL, leptin and UCP1), but by late gestation 

only a weak relationship between UCP1 and adiposity persisted. Moreover, expression of IGF1 and IGF2 

and all the aforementioned genes were highly correlated with each other at the early stage of gestation, 

but fewer between-gene relationships were evident by late gestation. These findings may be attributable 

to differentiation of adipose tissue into the two main cell types by late gestation, and the relative 

proportion of white versus brown adipocytes being differentially impacted by maternal undernutrition by 

that stage.  

 

Perirenal fat gene expression: impact of sex 
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We did not originally power the study to examine gender effects as we had no control over the sex 

of the embryo at the time of its transfer into the adolescent recipient. Irrespective of the low power when 

the gene expression data were examined it became clear that potentially interesting sex-specific effects 

were emerging. Accordingly when sex was included as a factor in the analysis, both leptin and LPL gene 

expression was higher in females than males overall. This agrees with reported higher LPL abundance in 

PAT and subcutaneous fat depots in female versus male lambs at 4 months postnatal age (Rattanatray et 

al. 2010). It also matches our data showing widespread sex differences in PAT gene expression, namely 

higher LPL, FASN and leptin, and lower IGF1, IGF2 and HSL in females, corresponding with their 

greater visceral and carcass fat deposition and larger adipocytes at 3 months of age (Wallace et al. 2014). 

Thus, the present study is the first in sheep to suggest that sex-specific differences in molecular markers 

of adipose tissue differentiation and/or function emerge in utero. We acknowledge that these potentially 

interesting gender differences in PAT gene expression require to be substantiated in a larger and more 

suitably powered study.  Nevertheless greater expression of leptin in female fetal PAT aligns with the 

prenatal sexual dimorphism in leptin secretion and neonatal adiposity in humans (females> males). 

Relative to males, female gender is associated with greater leptin concentrations in amniotic samples at 

16 weeks gestation and in cord blood at delivery (Cagnacci et al. 2006; Kayemba-Kay’s et al. 2008), and 

with greater percentage body fat as measured by air-displacement plethysmography neonatally (Hawkes 

et al. 2011).  Furthermore, since only females were sensitive herein to the effects of maternal 

undernutrition with respect to PPARG, leptin and LPL gene expression at gestational d89, the implication 

is that sensitivity to prevailing nutrition occurs earlier in females than males and there is likely to be a 

temporal difference in adipose tissue development between sexes throughout the early life-course. 

Previous studies investigating the impact of maternal nutrition on prenatal adipose gene 

expression in precocial animals have not reported fetal sex (Bispham et al. 2003; Budge et al. 2004; 

Mühlhäusler et al. 2007; Nguyen et al. 2010; Lie et al. 2013) but it is clearly an important consideration; 

imbalances in the male:female ratio may have confounded earlier results and may explain the lack of 

consensus in the sheep literature. Indeed, sexually-dimorphic differences in fetal growth and expression 
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of genes involved in adipogenesis and brown adipose tissue development following in vitro adipocyte 

differentiation in culture are seen in fetal baboons following modest maternal undernutrition throughout 

gestation (Tchoukalova et al. 2014). Although we did not determine the long term impact of the mid-

gestation sex-specific nutritional sensitivity of adipose tissue gene expression on postnatal adiposity, the 

present data align with findings from the Dutch famine of 1945. These show that maternal famine 

exposure during early (but not mid or late) pregnancy is associated with greater BMI and waist 

circumference at age 50 in women but not men (Ravelli et al. 1999) and may be due to altered DNA 

methylation of genes involved in adipose tissue metabolism (Tobi et al. 2009). 

In conclusion, these data support the hypothesis that molecular markers of adipose tissue 

development in the fetus are temporally sensitive to maternal undernutrition in precocial mammals. Some 

key genes regulating adipose tissue development and function are active from mid-gestation when they 

are variously sensitive to maternal undernutrition leading to reduced fetal adiposity in late gestation. 

Furthermore, sex-specific differences in adipose tissue gene expression emerge in fetal life. Whether 

these prenatal events impact body composition in adult life remains unknown but it is clear that ensuring 

adequate maternal nutrition from the earliest stages of pregnancy is essential to optimise fetal growth and 

neonatal adipose development.  
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Figure Legends 

 

Figure 1. Haematoxylin and eosin-stained sections of perirenal fat from a representative fetus from a 

control and an undernourished pregnancy (both females) with unilocular and multilocular fat cells 

highlighted (a and b), and relationships between perirenal unilocular fat mass and percentage of fat in the 

carcass (c, r=0.806, P=0.001), and between fetal weight and multilocular fat mass (d, r=0.605, P=0.022) 

at day 130 of gestation in fetuses from control (□) and undernourished (■) adolescent dams. 

 

Figure 2. Relative leptin (a) and LPL (b) mRNA expression in fetal perirenal fat of female (solid bar) and 

male (open bar) fetuses from control (C) and undernourished (UN) adolescent dams whose pregnancies 

were terminated on day 89 or day 130 of gestation. ANOVA was used to determine effects of sex, 

maternal nutrition, stage of gestation, and all possible interactions. Vertical bars are group mean ± sem 

and those with different letters differ P<0.05 using Tukey’s post-hoc method. Number of fetuses per 

group can be derived from Table 3. For leptin, there were effects of gender (P=0.001), stage of gestation 

(P=0.001), nutrition (P=0.029) and a gender x nutrition interaction (P=0.029). For LPL, there was an 

effect of gender (P=0.002), and a gender x nutrition x stage of gestation interaction (P=0.008).   

 

Figure 3. Relationships between body weight-specific perirenal adipose tissue (PAT) mass and perirenal 

fat (a) LPL mRNA (r=0.795, P<0.001) and (b) leptin mRNA (r=0.872, P<0.001) at day 89 of gestation in 

fetuses from control (□) and undernourished (■) adolescent dams. 

 

Figure 4. Relationships between relative PPARG gene expression and (a) IGF1, (b) G3PDH, (c) LPL and 

(d) leptin mRNA in fetal perirenal adipose tissue (PAT) at day 89 (●) and 130 (○) of gestation. At day 89 

and 130, respectively: r=0.940, P<0.001 and r=0.118, not significant (NS) for (a); r=0.853, P<0.001 and 

r=0.653, P<0.05 for (b); r=0.910, P<0.001 and r=0.723, P<0.01 for (c); r=0.900, P<0.001 and r=0.242, 

NS for (d). 
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Table 1. Maternal and fetal phenotype at necropsy on day 89 and 130 of gestation in relation to maternal nutrition (n=7/group) 

Stage of Gestation Day 89 Day 130 P valueα 
Maternal Nutrition Control UN Control UN Stage Nutrition Interaction 
Maternal  
     Change in adiposity§ 
     Liveweight, Kg¥ 

 
0.0±0.0a 
46.4±0.67a 

 
-0.4±0.05b 
42.3±1.12b 

 
0.0±0.0a 
49.6±0.58a 

 
-0.7±0.06c 
41.3±0.93b 

 
0.001 
0.236 

 
0.000 
0.000 

 
0.001 
0.024 

     Carcass weight, Kg 23.4±0.48a 20.5±0.71b 24.8±0.60a 18.9±0.53b 0.769 0.000 0.019 
     Plasma glucose, µmol/l 3.18±0.125a 2.99±0.055ab 3.29±0.098a 2.75 ±0.062b 0.484 0.000 0.057 
     Plasma insulin, ng/ml 0.69±0.058a 0.53±0.031ab 0.75±0.090a 0.39±0.046b 0.481 0.000 0.127 
     Plasma NEFA, mmol/ml 0.30±0.077a 0.26±0.039a 0.38±0.051ab 0.76±0.187b 0.012 0.129 0.063 
Fetal  
  Weight, g 

 
657±30a 

 
597±43a 

 
4274±84b 

 
3555±152c 

 
0.000 

 
0.000 

 
0.002 

  Total placentome weight, g 665±75a 607±28ab 480±28b 469±39b 0.002 0.595 0.751 
  Brain: liver ratio 0.314±0.017a 0.359±0.020ab 0.313±0.025a 0.441±0.031b 0.107 0.003 0.101 
  Plasma glucose, µmol/l 0.49±0.038a 0.47±0.055a 0.39±0.076ab 0.22±0.030b 0.004 0.076 0.150 
  Plasma insulin, ng/ml 0.44±0.022 0.44±0.019 0.47±0.083 0.29±0.038 0.215 0.076 0.086 
  Perirenal fat weight, g 2.1±0.29a 1.45±0.33a 27.4±1.11b 19.5±1.01c 0.000 0.000 0.000 
  Perirenal fat, g/kg fetus  3.3±0.52a 2.3±0.34a 6.4±0.23b 5.5±0.33b 0.000 0.019 0.890 
Values are group mean ± sem. αPost-hoc comparisons (Tukey’s Method) used to further differentiate between four groups  
thus within rows values with a different superscript letter differ at P<0.05. §Change in external adiposity score from embryo transfer  
to necropsy ¥Liveweight minus weight of gravid uterus at necropsy. UN, undernourished; NEFA, non-esterified fatty acids 
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Table 2. Unilocular and multilocular adipose cell distribution in the fetal perirenal  
fat depot at day 130 of gestation in relation to maternal nutrition (n=7/group) 
Maternal Nutrition Control UN P value, 

C vs UN 
Unilocular fat 
   Volume density, % 

 
51.3±3.79 

 
41.9±4.47* 

 
0.137 

   Total mass, g 14.0±1.07 8.2±1.01¥ 0.002 
   Relative mass, g/kg fetus 3.3±0.26 2.4±0.37 0.078 
Multilocular fat 
   Volume density, % 

 
48.6±3.81 

 
58.0±4.47* 

 
0.135 

   Total mass, g 13.4±1.37 11.3±0.96¥ 0.231 
   Relative mass, g/kg fetus 3.1±0.29 3.1±0.18 0.954 
Values are group mean ± sem. UN, undernourished. Within a nutritional group  
values with the same symbol differ from each other, P<0.05.  
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Table 3. Fetal perirenal fat gene expression at necropsy on day 89 and 130 of gestation in relation to 
maternal nutrition (n=7/group) 
 
Stage of Gestation Day 89 Day 130 P value α 
Maternal Nutrition Control UN Control UN Stage Nutrition Interaction 
Male: female ratio 3:4 2:5 3:4 3:4    
18S 0.023±0.001 0.024±0.001 0.024±0.001 0.024±0.001 0.551 0.214 0.150 
PPARG/18S 20.6±1.89ab 15.6±1.15a 22.3±1.25b 23.8±1.49b 0.003 0.266 0.042 
G3PDH/18S 20.9±2.21a 18.8±1.47a 41.9±2.95b 50.8±3.29b  0.000 0.213 0.051 
LPL/18S 27.6±4.11 20.8±1.71 24.8±1.96 26.8±2.73 0.578 0.415 0.142 
FASN/18S 22.6±3.95 21.2±2.47 27.4±3.57 20.9±2.00 0.973 0.433 0.423 
HSL/18S 10.6±2.09a 7.7±0.87a 36.9±1.48b 43.5±3.41b 0.000 0.423 0.047 
Leptin/18S 34.9±5.97ab 23.8±1.88b 47.9±5.08a 40.3±3.96ab 0.004 0.056 0.708 
UCP-1/18S 0.53±0.07a 0.38±0.08a 37.3±3.05b 33.9±2.94b 0.000 0.431 0.469 
PRLR/18S 0.9±0.12a 0.9±0.15a 25.6±3.26b 26.1±2.84b 0.000 0.905 0.901 
IGF1/18S 30.5±1.48a 23.1±1.83a 10.9±3.30b 5.9±0.32b 0.000 0.006 0.563 
IGF2/18S 35.3±2.36a 27.0±2.49a 9.0±2.76b 7.1±0.41b 0.000 0.031 0.163 
IGF1R/18S 14.6±1.10a 11.8±1.12ab 8.9±0.50b 8.4±0.64b 0.000 0.082 0.204 
IGF2R/18S 21.8±1.57a 16.1±1.67b 8.1±1.18c 7.5±0.68c 0.000 0.025 0.067 
Values are group mean ± sem. αPost-hoc comparisons (Tukey’s Method) used to further differentiate between  
the four groups; thus within rows values with a different superscript letter differ at P<0.05. UN, undernourished. 
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Table 4. Relationship between perirenal fat gene expression (relative to 18S) and fetal weight, fat mass and metabolic status at day 89  
and 130 of gestation, irrespective of maternal nutrition and gender.  
 PPARG G3PDH LPL FASN HSL Leptin UCP-1 IGF1 IGF2 IGF1R IGF2R 
Day 89 
  Fetal weight, g 

 
0.137 

 
0.139 

 
0.161 

 
0.333 

 
0.274 

 
0.122 

 
0.203 

 
0.257 

 
0.189 

 
-0.132 

 
0.066 

  Perirenal fat mass, g 0.619* 0.636* 0.707** 0.807*** 0.770*** 0.759** 0.630* 0.505 0.389 -0.060 0.325 
  Perirenal fat, g/kg fetus 0.729** 0.717** 0.795*** 0.808*** 0.805*** 0.872*** 0.702** 0.558* 0.442 0.049 0.420 
  Plasma glucose -0.207 -0.282 -0.233 -0.177 -0.166 -0.215 -0.397 -0.105 -0.075 -0.323 -0.234 
  Plasma insulin -0.497 -0.413 -0.584* -0.538* -0.696** -0.489 -0.697** -0.377 -0.436 -0.205 -0.400 
Day 130 
  Fetal weight, g 

 
-0.422 

 
-0.560* 

 
-0.511 

 
0.239 

 
-0.612* 

 
0.015 

 
0.003 

 
0.390 

 
0.093 

 
-0.061 

 
-0.047 

  Perirenal fat mass, g -0.328 -0.570* -0.315 0.193 -0.549* 0.179 0.421 0.483 0.267 0.093 0.140 
  Perirenal fat, g/kg  fetus -0.064 -0.315 0.010 0.084 -0.222 0.208 0.594* 0.343 0.295 0.161 0.221 
  Plasma glucose 0.172 0.215 0.197 0.361 -0.130 0.689** 0.265 0.879***  0.796** 0.631* 0.741** 
  Plasma insulin -0.059 -0.137 0.129 0.016 -0.241 0.716** 0.192 0.597* 0.477 0.449 0.475 
Values are Pearson correlation coefficients with significant values shown in bold, *P<0.05, **P<0.01, ***P<0.001. 
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Table 5. Relationships between relative expression of genes in perirenal fat irrespective of nutrition status or gender at  
day 89 and day 130 of gestation 
Day 89 G3PDH LPL FASN HSL Leptin UCP1 IGF1 IGF2 IGF1R IGF2R 
PPARG 0.853*** 0.910*** 0.715** 0.747** 0.900*** 0.768** 0.940*** 0.896*** 0.593* 0.882*** 
G3PDH  0.754** 0.677** 0.693** 0.845*** 0.715** 0.710** 0.738** 0.429 0.670** 
LPL   0.899*** 0.891*** 0.938*** 0.754** 0.805*** 0.714** 0.361 0.738** 
FASN    0.896*** 0.833*** 0.669** 0.573* 0.468 -0.023 0.422 
HSL     0.868*** 0.837*** 0.603* 0.560* 0.124 0.515 
Leptin      0.752** 0.735** 0.662** 0.311 0.666** 
UCP1       0.663** 0.626* 0.333 0.599* 
IGF1        0.951*** 0.686** 0.927*** 
IGF2         0.776*** 0.937** 
IGF1R          0.874*** 
Day 130 G3PDH LPL FASN HSL Leptin UCP-1 IGF1 IGF2 IGF1R IGF2R 
PPARGγ 0.653* 0.723** 0.157 0.824*** 0.242 0.171 0.118 0.345 0.548* 0.427 
G3PDH  0.645* 0.189 0.713** 0.347 -0.113 0.192 0.356 0.252 0.321 
LPL   -0.008 0.716** 0.222 0.006 0.014 0.155 0.502 0.245 
FASN    0.099 0.129 -0.047 0.348 0.337 0.000 0.193 
HSL     0.220 -0.217 -0.166 0.087 0.181 0.150 
Leptin      0.107 0.433 0.432 0.506 0.501 
UCP1        0.390 0.446 0.419 0.423 
IGF1        0.934*** 0.509 0.768*** 
IGF2         0.598* 0.896*** 
IGF1R          0.816*** 
Values are Pearson correlation coefficients with significant values shown in bold, *P<0.05, **P<0.01, ***P<0.001. 
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Figure 1 – see separate file 
 
Figure 2 (a) 
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Figure 3. 
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Figure 4 
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