1,405 research outputs found

    Formulation of an isogeometric shell element for crash simulation

    Get PDF
    In this paper, we propose, for the isogeometric analysis, a shell model based on a degenerated three dimensional approach. It uses a first order kinematic description in the thickness with transverse shear (Reissner-Mindlin theory). We examine various approaches to describe the geometry and compare them on various linear and non-linear benchmark problems. Both geometric and material non-linearities are treated. The obtained results are compared with the solutions of isogeometric solid model and with other numerical solutions found in the literature

    A GPU-based multi-criteria optimization algorithm for HDR brachytherapy

    Full text link
    Currently in HDR brachytherapy planning, a manual fine-tuning of an objective function is necessary to obtain case-specific valid plans. This study intends to facilitate this process by proposing a patient-specific inverse planning algorithm for HDR prostate brachytherapy: GPU-based multi-criteria optimization (gMCO). Two GPU-based optimization engines including simulated annealing (gSA) and a quasi-Newton optimizer (gL-BFGS) were implemented to compute multiple plans in parallel. After evaluating the equivalence and the computation performance of these two optimization engines, one preferred optimization engine was selected for the gMCO algorithm. Five hundred sixty-two previously treated prostate HDR cases were divided into validation set (100) and test set (462). In the validation set, the number of Pareto optimal plans to achieve the best plan quality was determined for the gMCO algorithm. In the test set, gMCO plans were compared with the physician-approved clinical plans. Over 462 cases, the number of clinically valid plans was 428 (92.6%) for clinical plans and 461 (99.8%) for gMCO plans. The number of valid plans with target V100 coverage greater than 95% was 288 (62.3%) for clinical plans and 414 (89.6%) for gMCO plans. The mean planning time was 9.4 s for the gMCO algorithm to generate 1000 Pareto optimal plans. In conclusion, gL-BFGS is able to compute thousands of SA equivalent treatment plans within a short time frame. Powered by gL-BFGS, an ultra-fast and robust multi-criteria optimization algorithm was implemented for HDR prostate brachytherapy. A large-scale comparison against physician approved clinical plans showed that treatment plan quality could be improved and planning time could be significantly reduced with the proposed gMCO algorithm.Comment: 18 pages, 7 figure

    Self-generation of megagauss magnetic fields during the expansion of a plasma

    No full text
    International audienceThe expansion of a plasma slab into a vacuum is studied using one-dimensional and two-dimensional particle-in-cell simulations. As electrons transfer their longitudinal kinetic energy to ions during the expansion, the electron temperature becomes anisotropic. Once this anisotropy exceeds a threshold value, it drives the Weibel instability, leading to magnetic fields in the megagauss range. These fields induce energy transfer between the longitudinal and transverses directions, which influences the expansion. The impact of a cold electron population on this phenomenon is also investigated. Plasma expansion is a fundamental process which occurs in very different fields, such as astrophysics ͓1,2͔, laser-plasma ion acceleration ͓3–5͔ and thin-film deposition ͓6͔. This phenomenon is usually described by simple one-dimensional models ͓7–9͔. Yet, even when the system is translation-invariant along the plasma surface, several effects ͑e.g., Coulomb collisions ͓10͔͒ can induce momentum transfer between the longitudinal and transverse directions. The purely one-dimensional ͑1D͒ description is thus, in general, inaccurate. In this paper, we show that self-generated magnetic fields can lead to such momentum transfer during the expansion of a collisionless plasma slab. This study is of particular interest in the context of laser-plasma ion acceleration , where an intense laser pulse is focused on a thin foil to create a hot electron population that transfers progressively its energy to ions via the ambipolar electric field at the plasma surface ͓11͔. We assume here that the electron distribution is initially Maxwellian with an isotropic temperature. As the plasma expands, the longitudinal temperature T ʈ decreases and the anisotropy parameter A = T Ќ / T ʈ − 1 increases, which eventually leads to the growth of the Weibel instability ͓12–18͔. The most unstable modes are obtained for k = k x e x , where e x is a unit vector normal to the plasma surface. In this case, the maximum unstable wave vector is k

    Regimes of expansion of a collisional plasma into a vacuum

    No full text
    International audienceThe effect of elastic Coulomb collisions on the one-dimensional expansion of a plasma slab is studied in the classical limit, using an electrostatic particle-in-cell code. Two regimes of interest are identified. For a collision rate of few hundreds of the inverse of the expansion characteristic time τe \tau_e the electron distribution function remains isotropic and Maxwellian with a homogeneous temperature, during all the expansion. In this case, the expansion can be approached by a three-dimensional version of the hybrid model developed by Mora [P. Mora, Phys. Rev. E 72, 056401 2005]. When the collision rate becomes somewhat greater than 104τe110^4 \tau_e^{-1} the plasma is divided in two parts: an inner part which expands adiabatically as an ideal gas and an outer part which undergoes an isothermal expansion

    Influence of the Weibel instability on the expansion of a plasma slab into a vacuum

    No full text
    International audienceThe development of the Weibel instability during the expansion of a thin plasma foil heated by an intense laser pulse is investigated, using both analytical models and relativistic particle-in-cell simulations. When the plasma has initially an anisotropic electron distribution, this electromagnetic instability develops from the beginning of the expansion. Then it contributes to suppress the anisotropy and eventually saturates. After the saturation, the strength of the magnetic field decreases because of the plasma expansion until it becomes too weak to maintain the distribution isotropic. For this time, the anisotropy rises as electrons give progressively their longitudinal energy to ions, so that a new instability can develop

    The response of microphytobenthos to physical disturbance, herbicide, and titanium dioxide nanoparticles exposure

    Get PDF
    The research leading to these results received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730984, ASSEMBLE Plus project. AJW was funded by the John Templeton Grant 60501, “Putting the Extended Evolutionary Synthesis to the Test”. DMP and AJB were supported by the NERC Blue-coast award (NE/N016009/1).The microphytobenthos that form transient biofilms are important primary producers in intertidal, depositional habitats, yet we have only a limited understanding of how they respond to the cumulative impacts of the growing range of anthropogenic stressors to which they are exposed. We know even less about how the temporal alignment of exposure – such as duration and exposure sequence – may affect the response. Estuarine biofilms were cultured in mesocosms and exposed to the herbicide glyphosate and titanium dioxide (TiO2) nanoparticles in different sequences (glyphosate-first or TiO2-first), as well as in the presence and absence of physical disturbance. We found that at environmentally realistic chemical concentrations, the order of exposure was less important than the total stressor scenario in terms of impacts on key functional attributes and diatom community structure. Physical disturbance did not have an impact on functional attributes, regardless of exposure sequence.Publisher PDFPeer reviewe

    Reference Process Models and Systems for Inter-Organizational Ad-Hoc Coordination - Supply Chain Management in Humanitarian Operations

    Get PDF
    International audienceIn this work we present a general framework for process-oriented coordination and collaboration in humanitarian operations. Process management has been proven useful in many business domains, but humanitarian operations and disaster response management in general require different process management approaches. Related work has only recently introduced traditional process management approaches for emergency management. These traditional approaches have several limitations with respect to the domain of humanitarian operations and disaster management. Our approach points to design, run-time and monitoring of inter-organizational humanitarian logistics processes. It consists of two parts: A reference model for humanitarian logistics tasks and a system for ad-hoc process management of these tasks. We discuss how they can be integrated to provide additional benefit

    Clonal Dynamics Reveal Two Distinct Populations of Basal Cells in Slow-Turnover Airway Epithelium.

    Get PDF
    Epithelial lineages have been studied at cellular resolution in multiple organs that turn over rapidly. However, many epithelia, including those of the lung, liver, pancreas, and prostate, turn over slowly and may be regulated differently. We investigated the mouse tracheal epithelial lineage at homeostasis by using long-term clonal analysis and mathematical modeling. This pseudostratified epithelium contains basal cells and secretory and multiciliated luminal cells. Our analysis revealed that basal cells are heterogeneous, comprising approximately equal numbers of multipotent stem cells and committed precursors, which persist in the basal layer for 11 days before differentiating to luminal fate. We confirmed the molecular and functional differences within the basal population by using single-cell qRT-PCR and further lineage labeling. Additionally, we show that self-renewal of short-lived secretory cells is a feature of homeostasis. We have thus revealed early luminal commitment of cells that are morphologically indistinguishable from stem cells.This study was supported by the Medical Research Council (G0900424 to E.R.), European Union grant EuroSyStem (200720; FP7/2008), the Newton Trust (to E.R.), the Wellcome Trust (098357/Z/12/Z to B.D.S.). Core grants from the Wellcome Trust (092096) and Cancer Research UK (C6946/A14492).This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.celrep.2015.06.01
    corecore