59 research outputs found

    Growing in the Dark Warmth: The Case of Amazonian Fish Colossoma macropomum

    Get PDF
    Photoperiod is considered an important synchronizer of biological activities and endocrine pathways, including growth. As ectotherms, fish have many physiological functions controlled by the photoperiod. However, the combined effects of photoperiod and temperature should be clarified, particularly for tropical fish living near their upper thermal limit, as is the case of Amazonian fish. The central aim of this study was to evaluate the combined effect of photoperiod and temperature on growth and physiological aspects of tambaqui (Colossoma macropomum). Juveniles of tambaqui were distributed in 70 L tank, following a factorial design that included three photoperiods (light 0 h: darkness 24 h; light 12 h: darkness 12 h; and light 18 h: darkness 6 h) associated with three temperatures (26, 29, and 32°C). They were maintained under these conditions for 2 months. Fish reared in the dark at 29 and 32°C showed better performance compared to fish reared under extended light conditions at all temperatures. Among physiological responses, it has been observed that blood parameters tend to be disturbed with increasing temperature and that extended light conditions at low temperatures caused similar effects on the analyzed fish, suggesting blood hemoconcentration. Fish under extended light conditions showed an increase in glucose, cortisol, cholesterol, and total proteins, indicating additional physiological disturbances. In conclusion, our study shows that, unlike marine and temperate fish, C. macropomum, a fish species endemic to the Amazon, grows better in warmth dark, showing no significant physiological disturbances, similar to observations described for wild animals of this species. Our results support that changes in fish growth occur in response to environmental conditions. Therefore, fish species from freshwater, estuarine, and marine environments, must be specifically analyzed regarding the combination effects of photoperiod and temperature

    Dissolved Organic Carbon from the Upper Rio Negro Protects Zebrafish (Danio rerio) Against Ionoregulatory Disturbances Caused by Low pH Exposure

    Get PDF
    The so-called “blackwaters” of the Amazonian Rio Negro are rich in highly coloured dissolved organic carbon (DOC), but ion-poor and very acidic, conditions that would cause fatal ionoregulatory failure in most fish. However these blackwaters support 8% of the world’s ichthyofauna. We tested the hypothesis that native DOC provides protection against ionoregulatory dysfunction in this extreme environment. DOCs were isolated by reverse-osmosis from two Rio Negro sites. Physico-chemical characterization clearly indicated a terrigenous origin, with a high proportion of hydroxyl and phenolic sites, high chemical reactivity to protons, and unusual proteinaceous fluorescence. When tested using zebrafish (a model organism), Rio Negro DOC provided almost perfect protection against ionoregulatory disturbances associated with acute exposure to pH 4.0 in ion-poor water. DOC reduced diffusive losses of Na+ and Cl−, and promoted a remarkable stimulation of Na+ uptake that otherwise would have been completely inhibited. Additionally, prior acclimation to DOC at neutral pH reduced rates of branchial Na+ turnover, and provided similar protection against acid-induced ionoregulatory disturbances, even if the DOC was no longer present. These results reinforce the important roles that DOC molecules can play in the regulation of gill functions in freshwater fish, particularly in ion-poor, acidic blackwaters

    A protocol for fish lipid analysis using nuclear magnetic resonance spectroscopy

    Get PDF
    This article reports on an easy-to-follow methodology for fish lipids analysis, including the biological sample collection, lipid extraction, sample preparation, nuclear magnetic resonance (NMR) spectroscopy analysis and statistical data analysis, with details on parameters used for the NMR analysis and the care needed in each step execution. As an example of the biological matrix of lipids, for the entire procedure, we have used two Amazonian fish samples. Phenotype factor was taken into account when lipid contents of the Amazonian fish samples were evaluated, such as fish-eating habits in distinct Amazon seasonal periods, the flood and the drought. Results demonstrated the applicability of NMR as a powerful and useful tool for fish oil analysis. The omnivorous (T. elongatus) and the piscivorous (C. monoculus) Amazonian fish differ in composition and distribution of lipids, which show differences not only because of the different eating habits between the two species, but also by the availability and quantity of food along the year, i.e., during the flood and drought Amazon periods. ©2020 Sociedade Brasileira de Químic

    Mechanisms of ion transport in Potamotrygon, a stenohaline freshwater elasmobranch native to the ion-poor blackwaters of the Rio Negro

    Get PDF
    Stingrays of the family Potamotrygonidae are the only stenohaline freshwater elasmobranchs. Potomotrygon sp. collected from the ion-poor blackwaters ([Na+], [Cl-] and [Ca2+]=10-30μmoll-1, pH6.1) of the Rio Negro, Amazonas, Brazil, were ammoniotelic (91% ammonia-N, 9% urea-N excretion) and exhibited blood chemistry (Na+, Cl-, urea, ammonia and glucose levels and osmolality) typical of freshwater teleosts. Unidirectional Na+ and Cl- influx rates, measured with radiotracers, displayed saturation kinetics. The relationships for Cl- and Na+ had similar Km values (300-500 μmoll-1), but Jmax values for Cl- (approximately 950 μmol kg-1 h-1) were almost twice those for Na+ (approximately 500 μmol kg-1 h-1). Cl- efflux rates varied with external concentration, but Na+ efflux rates did not. There were no differences in the kinetic variables (Km, Jmax) for influx between animals acclimated to their native ion-poor blackwater or to ion-rich hard water, but efflux rates for both Na+ and Cl- were lower in the former, yielding much lower balance points (external Na+ or Cl- levels at which influx and efflux were equal). Na+, Cl- and Ca2+ uptake were all strongly inhibited by acute exposure to pH4.0, but efflux rates and Ca2+ binding to the body surface did not change. Na+ influx was inhibited by amiloride (10-4moll-1) and by two of its analogs, phenamil (4×10-5moll-1) and HMA (4×10-5moll-1), with the latter being slightly more potent, while Cl- fluxes were unaffected. Cl- fluxes were insensitive to DIDS (2×10-5moll-1 or 10-4moll-1) and SITS (10-4moll-1), but both influx and efflux rates were strongly inhibited by DPC (10-4moll-1) and thiocyanate (10-4moll-1). Ammonia excretion was unresponsive to large changes in water Na+ concentration, but was elevated by 70% during acute exposure to pH4.0 and transiently inhibited by approximately 50% by amiloride and its analogues. The strategy of adaptation to ion-poor blackwater appears similar to that of some Rio Negro teleosts (Cichlidae) in which low-affinity transport systems are relatively sensitive to inhibition by low pH but are complemented by low diffusive loss rates. Ionic transport systems in these freshwater elasmobranchs, although superficially similar to those in some freshwater teleosts, may bear more resemblance to their presumed evolutionary precursors in marine elasmobranchs

    Limited extracellular but complete intracellular acid-base regulation during short-term environmental hypercapnia in the armoured catfish, Liposarcus pardalis

    Get PDF
    Environmental hypercapnia induces a respiratory acidosis that is usually compensated within 24-96 h in freshwater fish. Water ionic composition has a large influence on both the rate and degree of pH recovery during hypercapnia. Waters of the Amazon are characteristically dilute in ions, which may have consequences for acid-base regulation during environmental hypercapnia in endemic fishes. The armoured catfish Liposarcus pardalis, from the Amazon, was exposed to a water PCO2 of 7, 14 or 42 mmHg in soft water (in μmol l-1: Na+, 15, Cl-, 16, K+, 9, Ca2+, 9, Mg2+, 2). Blood pH fell within 2 h from a normocapnic value of 7.90±0.03 to 7.56±0.04, 7.34±0.05 and 6.99±0.02, respectively. Only minor extracellular pH (pHe) recovery was observed in the subsequent 24-96 h. Despite the pronounced extracellular acidosis, intracellular pH (pHi) of the heart, liver and white muscle was tightly regulated within 6 h (the earliest time at which these parameters were measured) via a rapid accumulation of intracellular HCO3-. While most fish regulate pHi during exposure to environmental hypercapnia, the time course for this is usually similar to that for pHe regulation. The degree of extracellular acidosis tolerated by L. pardalis, and the ability to regulate pHi in the face of an extracellular acidosis, are the greatest reported to date in a teleost fish. The preferential regulation of pHi in the face of a largely uncompensated extracellular acidosis in L. pardalis is rare among vertebrates, and it is not known whether this is associated with the ability to air-breathe and tolerate aerial exposure, or living in water dilute in counter ions, or with other environmental or evolutionary selective pressures. The ubiquity of this strategy among Amazonian fishes and the mechanisms employed by L. pardalis are clearly worthy of further study

    Critical swimming speed of matrinxã (Brycon amazonicus) exposed to hypoxia

    Get PDF
    Escape is the first response of fish to stress, that depends on the swimming performance and the physiological adjustments. This study has investigated the critical swimming speed (Ucrit) of matrinxã after exposure to hypoxia. To achieve that, the fishes were exposed to hypoxia and analyzed before and after forced swimming, using Ucrit. The hypoxia caused an increase of lactate, glucose, cortisol and hematocrit. No changes of plasma sodium and potassium levels, as well as the Ucrit, were observed. We suggest that matrinxã is sensitive to hypoxia, but the physiological adjustments are sufficient to keep its swimming performance.A primeira resposta ao estresse é a fuga, que depende do desempenho natatório e de ajustes fisiológicos. Este estudo investigou a velocidade crítica de natação (Ucrit) de matrinxã após exposição à hipoxia. Para isso, os peixes foram expostos à hipoxia, sendo uma parte do grupo analisada antes e outra após natação forçada, por meio da Ucrit. A hipoxia resultou no aumento de lactato, glicose, cortisol e hematócrito. Mudanças nos níveis de sódio e potássio, bem como os valores de Ucrit não foram observadas. Sugere-se que o matrinxã seja sensível à hipoxia, mas os ajustes fisiológicos são suficientes para manter seu desempenho natatório

    Liste alphabétique des titres

    Get PDF
    In the last years many populations of anurans have declined and extinctions have been recorded. They were related to environmental pollution, changes of land use and emerging diseases. The main objective of this study was to determine copper sensitivity of the anuran of the Amazon Rhinella granulosa and Scinax ruber tadpoles at stage 25 and Scinax ruber eggs exposed for 96 h to copper concentrations ranging from 15 µg Cu L-1 to 94 µg Cu L-1. LC50 at 96 h of Rhinella granulosa Gosner 25, Scinax ruber Gosner 25 and Scinax ruber eggs in black water of the Amazon were 23.48, 36.37 and 50.02 µg Cu L-1, respectively. The Biotic Ligand Model was used to predict the LC50 values for these species and it can be considered a promising tool for these tropical species and water conditions. Copper toxicity depends on water physical-chemical composition and on the larval stage of the tadpoles. The Gosner stage 19-21 (related to the appearance of external gills) is the most vulnerable and the egg stage is the most resistant. In case of contamination by copper, the natural streams must have special attention, since copper is more bioavailable.Nos últimos anos foram registrados muitas extinções e declínios de populações de anuros. Eles estavam relacionados com a poluição do ambiente, a mudanças no uso da terra e ao surgimento de doenças. O principal objetivo deste estudo foi determinar a sensibilidade dos anuros amazônicos ao cobre. Os girinos de Scinax ruber e Rhinella granulosa no estadio 25 e os ovos de Scinax ruber foram expostos por 96 horas a concentrações de cobre entre 15 µg Cu L-1 a 94 µg Cu L-1. A CL50 -96 h dos girinos de Rhinella granulosa, dos girinos de Scinax ruber e dos ovos de Scinax ruber em águas pretas da Amazônia foram 23,48; 36,37 e 50,02 µg Cu L-1, respectivamente. O modelo do ligante biótico foi usado para prever os valores de CL50 para essas duas espécies e pode ser considerado uma ferramenta promissora para essas espécies tropicais e para essas condições de água. A Toxicidade de cobre depende da composição físico-química da água e do estagio larval dos girinos. O estadio 19-21 de Gosner (relacionados ao aparecimento das brânquias externas) são os mais vulnerável e o estagio de ovo é o mais resistente. Em caso de contaminação por cobre, os igarapés naturais devem ter uma atenção especial, uma vez que o cobre é mais biodisponível nesse ambiente

    Antioxidant deffense in fish of the Amazon exposed to normoxia and Hyperoxia

    No full text
    corecore