761 research outputs found
The Quadratic Symmetric Teleparallel Gravity in Two-Dimensions
A 2D symmetric teleparallel gravity model is given by a generic 4-parameter
action that is quadratic in the non-metricity tensor. Variational field
equations are derived. A class of conformally flat solutions is given. We also
discuss static and cosmological solutions
Dirac equation in spacetimes with torsion and non-metricity
Dirac equation is written in a non-Riemannian spacetime with torsion and
non-metricity by lifting the connection from the tangent bundle to the spinor
bundle over spacetime. Foldy-Wouthuysen transformation of the Dirac equation in
a Schwarzschild background spacetime is considered and it is shown that both
the torsion and non-metricity couples to the momentum and spin of a massive,
spinning particle. However, the effects are small to be observationally
significant.Comment: 12 pages LATEX file, no figures, to appear in Int. J. Mod. Phys.
Nonmetricity and torsion induced by dilaton gravity in two dimension
We develop a theory in which there are couplings amongst Dirac spinor,
dilaton and non-Riemannian gravity and explore the nature of connection-induced
dilaton couplings to gravity and Dirac spinor when the theory is reformulated
in terms of the Levi-Civita connection. After presenting some exact solutions
without spinors, we investigate the minimal spinor couplings to the model and
in conclusion we can not find any nontrivial dilaton couplings to spinor.Comment: Added references, Accepted for publication in GR
Symmetric Teleparallel Gravity: Some exact solutions and spinor couplings
In this paper we elaborate on the symmetric teleparallel gravity (STPG)
written in a non-Riemannian spacetime with nonzero nonmetricity, but zero
torsion and zero curvature. Firstly we give a prescription for obtaining the
nonmetricity from the metric in a peculiar gauge. Then we state that under a
novel prescription of parallel transportation of a tangent vector in this
non-Riemannian geometry the autoparallel curves coincides with those of the
Riemannian spacetimes. Subsequently we represent the symmetric teleparallel
theory of gravity by the most general quadratic and parity conserving
lagrangian with lagrange multipliers for vanishing torsion and curvature. We
show that our lagrangian is equivalent to the Einstein-Hilbert lagrangian for
certain values of coupling coefficients. Thus we arrive at calculating the
field equations via independent variations. Then we obtain in turn conformal,
spherically symmetric static, cosmological and pp-wave solutions exactly.
Finally we discuss a minimal coupling of a spin-1/2 field to STPG.Comment: Accepted for publication in the International Journal of Modern
Physics
Spinor couplings to dilaton gravity induced by the dimensional reduction of topologically massive gravity
A Dirac spinor is coupled to topologically massive gravity and the D=3
dimensional action is reduced to D=2 dimensions with a metric that includes
both the electromagnetic potential 1-form A and a dilaton scalar \phi. The
dimensionnaly reduced spinor is made a mass eigenstate with a (local) chiral
rotation. The non-trivial interactions thus induced are discussed.Comment: 8 pages, no figure
Neutrino Oscillations Induced by Space-Time Torsion
The gravitational neutrino oscillation problem is studied by considering the Dirac Hamiltonian in a Riemann-Cartan space-time and calculating the dynamical phase. Torsion contributions which depend on the spin direction of the mass eigenstates are found. These effects are of the order of Planck scales
Poisson-sigma model for 2D gravity with non-metricity
We present a Poisson-sigma model describing general 2D dilaton gravity with
non-metricity, torsion and curvature. It involves three arbitrary functions of
the dilaton field, two of which are well-known from metric compatible theories,
while the third one characterizes the local strength of non-metricity. As an
example we show that alpha' corrections in 2D string theory can generate
(target space) non-metricity.Comment: 9 page
String-Inspired Chern-Simons Modified Gravity In 4-Dimensions
Chern-Simons modified gravity models in 4-dimensions are shown to be special
cases of low energy effective string models to first order in the string
constant.Comment: To appear in the European Physics Journal
Long-term stability test of a triple GEM detector
The main aim of the study is to perform the long-term stability test of gain
of the single mask triple GEM detector. A simple method is used for this long-
term stability test using a radioactive X-ray source with high activity. The
test is continued till accumulation of charge per unit area > 12.0 mC/mm2. The
details of the chamber fabrication, the test set-up, the method of measurement
and the test results are presented in this paper.Comment: 8 pages, 5 figure
Whole-genome sequencing for national surveillance of Shiga toxin–producing Escherichia coli O157
Background. National surveillance of gastrointestinal pathogens, such as Shiga toxin–producing Escherichia coli O157 (STEC O157), is key to rapidly identifying linked cases in the distributed food network to facilitate public health interventions. In this study, we used whole-genome sequencing (WGS) as a tool to inform national surveillance of STEC O157 in terms of identifying linked cases and clusters and guiding epidemiological investigation. Methods. We retrospectively analyzed 334 isolates randomly sampled from 1002 strains of STEC O157 received by the Gastrointestinal Bacteria Reference Unit at Public Health England, Colindale, in 2012. The genetic distance between each isolate, as estimated by WGS, was calculated and phylogenetic methods were used to place strains in an evolutionary context. Results. Estimates of linked clusters representing STEC O157 outbreaks in England and Wales increased by 2-fold when WGS was used instead of traditional typing techniques. The previously unidentified clusters were often widely geographically distributed and small in size. Phylogenetic analysis facilitated identification of temporally distinct cases sharing common exposures and delineating those that shared epidemiological and temporal links. Comparison with multi locus variable number tandem repeat analysis (MLVA) showed that although MLVA is as sensitive as WGS, WGS provides a more timely resolution to outbreak clustering. Conclusions. WGS has come of age as a molecular typing tool to inform national surveillance of STEC O157; it can be used in real time to provide the highest strain-level resolution for outbreak investigation. WGS allows linked cases to be identified with unprecedented specificity and sensitivity that will facilitate targeted and appropriate public health investigations
- …
