9 research outputs found

    The clinical heterogeneity of coenzyme Q10 deficiency results from genotypic differences in the Coq9 gene

    Get PDF
    Primary coenzyme Q10 (CoQ10) deficiency is due to mutations in genes involved in CoQ biosynthesis. The disease has been associated with five major phenotypes, but a genotype–phenotype correlation is unclear. Here, we compare two mouse models with a genetic modification in Coq9 gene (Coq9Q95X and Coq9R239X), and their responses to 2,4‐dihydroxybenzoic acid (2,4‐diHB). Coq9R239X mice manifest severe widespread CoQ deficiency associated with fatal encephalomyopathy and respond to 2,4‐diHB increasing CoQ levels. In contrast, Coq9Q95X mice exhibit mild CoQ deficiency manifesting with reduction in CI+III activity and mitochondrial respiration in skeletal muscle, and late‐onset mild mitochondrial myopathy, which does not respond to 2,4‐diHB. We show that these differences are due to the levels of COQ biosynthetic proteins, suggesting that the presence of a truncated version of COQ9 protein in Coq9R239X mice destabilizes the CoQ multiprotein complex. Our study points out the importance of the multiprotein complex for CoQ biosynthesis in mammals, which may provide new insights to understand the genotype–phenotype heterogeneity associated with human CoQ deficiency and may have a potential impact on the treatment of this mitochondrial disorder.This work was supported by grants from the Marie Curie International Reintegration Grant Programme (COQMITMEL-266691 to LCL) within the Seventh European Community Framework Programme, from Ministerio de Economía y Competitividad, Spain (SAF2009-08315 and SAF2013-47761-R to LCL), from the Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (P10-CTS-6133 to LCL), and from the ‘CEIBioTic’ (20F12/1 to LCL). MLS is a predoctral fellow from the Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía. LCL is supported by the ‘Ramón y Cajal’ National Programme, Ministerio de Economía y Competitividad, Spain (RYC-2011-07643). MAT is supported by a predoctoral grant from the University of Granada. EJC is supported by the Research Program of the University of Granada. CMQ is supported by NICHD Grants 5K23 HDO65871-05 and P01 HD080642-01, and by a MDA grant. The proteomic analysis was performed in the CSIC/UAB Proteomics Facility of IIBB-CSIC that belongs to ProteoRed, PRB2-ISCIII, supported by Grant PT13/0001

    Prophylactic Role of Oral Melatonin Administration on Neurogenesis in Adult Balb/C Mice during REM Sleep Deprivation

    Get PDF
    Purpose. The aim of this study was to assess the effect of melatonin in the proliferation of neural progenitors, melatonin concentration, and antiapoptotic proteins in the hippocampus of adult mice exposed to 96 h REM sleep deprivation (REMSD) prophylactic administration of melatonin for 14 days. Material and Methods. Five groups of Balb/C mice were used: (1) control, (2) REMSD, (3) melatonin (10 mg/kg) plus REMSD, (4) melatonin and intraperitoneal luzindole (once a day at 5 mg/kg) plus REMSD, and (5) luzindole plus REMSD. To measure melatonin content in hippocampal tissue we used HPLC. Bcl-2 and Bcl-xL proteins were measured by Western Blot and neurogenesis was determined by injecting 5-bromo-2-deoxyuridine (BrdU) and BrdU/nestin expressing cells in the subgranular zone of the dentate gyrus were quantified by epifluorescence. Results. The melatonin-treated REMSD group showed an increased neural precursor in 44% with respect to the REMSD group and in 28% when contrasted with the control group (P<0.021). The melatonin-treated REMSD group also showed the highest expression of Bcl-2 and Bcl-xL as compared to the rest of the groups. Conclusion. The exogenous administration of melatonin restores the tissue levels of sleep-deprived group and appears to be an efficient neuroprotective agent against the deleterious effects of REMSD

    Clinical trial to test the efficacy of melatonin in COVID‐19

    No full text
    The pharmacological properties of melatonin are well known. However, there is noticeable the lack of clinical trials that confirm the efficacy, security, absence of side effects in the short and long term, and the effective doses of melatonin. This point is especially important in diseases with high morbidity and mortality including COVID-19. There is not treatment for COVID-19, and several anti-inflammatory and antiviral molecules are being tested, and different vaccines are in preparation. Although the SARS-CoV-2 pandemic is apparently improving, it is expected new resurges next fall. Thus, looking for an effective treatment of COVID-19 is mandatory. Melatonin has significant anti-inflammatory, antioxidant, and mitochondrial protective effects, and its efficacy has been demonstrated in multiple experimental models of disease and in a clinical trial in sepsis. Because COVID-19 courses with a severe septic response, multiple reviews proposing melatonin as a treatment for COVID-19 have been published. Nevertheless, there is a lack of experimental and clinical data on the use of melatonin on SARS-CoV-2 infection. Accordingly, we designed a clinical trial with an injectable formulation of melatonin for intravenous perfusion in ICU patients suffering from COVID-19 that has been just approved by the Spanish Agency of Medicines and Medical Devices (AEMPS). The trial will allow by the first time understand the doses and efficacy of melatonin against COVID-19

    Clinical trial to test the efficacy of melatonin in COVID-19.

    No full text
    The pharmacological properties of melatonin are well known. However, there is noticeable the lack of clinical trials that confirm the efficacy, security, absence of side effects in the short and long term, and the effective doses of melatonin. This point is especially important in diseases with high morbidity and mortality including COVID-19. There is not treatment for COVID-19, and several anti-inflammatory and antiviral molecules are being tested, and different vaccines are in preparation. Although the SARS-CoV-2 pandemic is apparently improving, it is expected new resurges next fall. Thus, looking for an effective treatment of COVID-19 is mandatory. Melatonin has significant anti-inflammatory, antioxidant, and mitochondrial protective effects, and its efficacy has been demonstrated in multiple experimental models of disease and in a clinical trial in sepsis. Because COVID-19 courses with a severe septic response, multiple reviews proposing melatonin as a treatment for COVID-19 have been published. Nevertheless, there is a lack of experimental and clinical data on the use of melatonin on SARS-CoV-2 infection. Accordingly, we designed a clinical trial with an injectable formulation of melatonin for intravenous perfusion in ICU patients suffering from COVID-19 that has been just approved by the Spanish Agency of Medicines and Medical Devices (AEMPS). The trial will allow by the first time understand the doses and efficacy of melatonin against COVID-19

    Protective effects of synthetic kynurenines on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice

    No full text
    ProducciĂłn CientĂ­ficaMitochondrial complex I inhibition is thought to underlie the neurodegenerative process in Parkinson's disease (PD). Moreover, an overproduction of nitric oxide due to both cytosolic (iNOS) and mitochondrial (i-mtNOS) inducible nitric oxide synthases causes free radicals generation and oxidative/nitrosative stress, contributing to mitochondrial dysfunction and neuronal cell death. Looking for active molecules against mitochondrial dysfunction and inflammatory response in PD, we show here the effects of four synthetic kynurenines in the MPTP model of PD in mice. After MPTP administration, mitochondria from substantia nigra and, in a lesser extent, from striatum showed a significant increase in i-mtNOS activity, nitric oxide production, oxidative stress, and complex I inhibition. The four kynurenines assayed counteracted the effects of MPTP, reducing iNOS/i-mtNOS activity, and restoring the activity of the complex I. Consequently, the cytosolic and mitochondrial oxidative/nitrosative stress returned to control values. The results suggest that the kynurenines here reported represent a family of synthetic compounds with neuroprotective properties against PD, and that they can serve as templates for the design of new drugs able to target the mitochondria

    ÎČ-RA Targets Mitochondrial Metabolism and Adipogenesis, Leading to Therapeutic Benefits against CoQ Deficiency and Age-Related Overweight

    No full text
    Primary mitochondrial diseases are caused by mutations in mitochondrial or nuclear genes, leading to the abnormal function of specific mitochondrial pathways. Mitochondrial dysfunction is also a secondary event in more common pathophysiological conditions, such as obesity and metabolic syndrome. In both cases, the improvement and management of mitochondrial homeostasis remain challenging. Here, we show that beta-resorcylic acid (ÎČ-RA), which is a natural phenolic compound, competed in vivo with 4-hydroxybenzoic acid, which is the natural precursor of coenzyme Q biosynthesis. This led to a decrease in demethoxyubiquinone, which is an intermediate metabolite of CoQ biosynthesis that is abnormally accumulated in Coq9R239X mice. As a consequence, ÎČ-RA rescued the phenotype of Coq9R239X mice, which is a model of primary mitochondrial encephalopathy. Moreover, we observed that long-term treatment with ÎČ-RA also reduced the size and content of the white adipose tissue (WAT) that is normally accumulated during aging in wild-type mice, leading to the prevention of hepatic steatosis and an increase in survival at the elderly stage of life. The reduction in WAT content was due to a decrease in adipogenesis, an adaptation of the mitochondrial proteome in the kidneys, and stimulation of glycolysis and acetyl-CoA metabolism. Therefore, our results demonstrate that ÎČ-RA acted through different cellular mechanisms, with effects on mitochondrial metabolism; as such, it may be used for the treatment of primary coenzyme Q deficiency, overweight, and hepatic steatosis
    corecore