22 research outputs found
Molecular systematics of the genus Acidithiobacillus:insights into the phylogenetic structure and diversification of the taxon
The acidithiobacilli are sulfur-oxidizing acidophilic bacteria that thrive in both natural and anthropogenic low pH environments. They contribute to processes that lead to the generation of acid rock drainage in several different geoclimatic contexts, and their properties have long been harnessed for the biotechnological processing of minerals. Presently, the genus is composed of seven validated species, described between 1922 and 2015: Acidithiobacillus thiooxidans, A. ferrooxidans, A. albertensis, A. caldus, A. ferrivorans, A. ferridurans, and A. ferriphilus. However, a large number of Acidithiobacillus strains and sequence clones have been obtained from a variety of ecological niches over the years, and many isolates are thought to vary in phenotypic properties and cognate genetic traits. Moreover, many isolates remain unclassified and several conflicting specific assignments muddle the picture from an evolutionary standpoint. Here we revise the phylogenetic relationships within this species complex and determine the phylogenetic species boundaries using three different typing approaches with varying degrees of resolution: 16S rRNA gene-based ribotyping, oligotyping, and multi-locus sequencing analysis (MLSA). To this end, the 580 16S rRNA gene sequences affiliated to the Acidithiobacillus spp. were collected from public and private databases and subjected to a comprehensive phylogenetic analysis. Oligotyping was used to profile high-entropy nucleotide positions and resolve meaningful differences between closely related strains at the 16S rRNA gene level. Due to its greater discriminatory power, MLSA was used as a proxy for genome-wide divergence in a smaller but representative set of strains. Results obtained indicate that there is still considerable unexplored diversity within this genus. At least six new lineages or phylotypes, supported by the different methods used herein, are evident within the Acidithiobacillus species complex. Although the diagnostic characteristics of these subgroups of strains are as yet unresolved, correlations to specific metadata hint to the mechanisms behind econiche-driven divergence of some of the species/phylotypes identified. The emerging phylogenetic structure for the genus outlined in this study can be used to guide isolate selection for future population genomics and evolutionary studies in this important acidophile model
Draft genome sequence of the type strain of the sulfur-oxidizing acidophile, Acidithiobacillus albertensis (DSM 14366)
Abstract Acidithiobacillus albertensis is an extremely acidophilic, mesophilic, obligatory autotrophic sulfur-oxidizer, with potential importance in the bioleaching of sulfidic metal ores, first described in the 1980s. Here we present the draft genome sequence of Acidithiobacillus albertensis DSM 14366T, thereby both filling a long-standing gap in the genomics of the acidithiobacilli, and providing further insight into the understanding of the biology of the non iron-oxidizing members of the Acidithiobacillus genus. The assembled genome is 3,1Â Mb, and contains 47 tRNAs, tmRNA gene and 2 rRNA operons, along with 3149 protein-coding predicted genes. The Whole Genome Shotgun project was deposited in DDBJ/EMBL/GenBank under the accession MOAD00000000
Detection of Nucleic Acids of the Fish Pathogen <i>Yersinia ruckeri</i> from Planktonic and Biofilm Samples with a CRISPR/Cas13a-Based Assay
Yersinia ruckeri is the cause of hemorrhagic septicemia, known as enteric redmouth disease, in salmonid fish species. This bacterial pathogen can form biofilms on abiotic surfaces of aquaculture settings or even on the surfaces of the fish themselves, contributing to their persistence in the aquatic environment. Detection methods for this and other fish pathogens can be time-consuming and lack specificity and sensitivity, limiting timely monitoring, the treatment of microbial infections, and effective control of their transmission in aquaculture settings. Rapid and sensitive detection methods for nucleic acids can be crucial for an appropriate surveillance of bacterial pathogens, and the CRISPR/Cas-based assays have emerged as a good alternative since it has been proven to be a useful tool for the rapid, specific, and sensitive detection of viruses and some bacteria. In this study, we explored the capability of the CRISPR/Cas13a system (SHERLOCK) to specifically detect both DNA and RNA (gene transcripts) from planktonic and biofilm samples of the bacterial fish pathogen Y. ruckeri. The assay was designed to detect the gyrA gene and the small noncoding RNAs (sRNAs) MicA and RprA from planktonic cultures and biofilm samples prepared in marine broth. The specific crRNA designed for these gene targets included a 28 nt specific gene sequence, and a scaffold sequence necessary for Cas13-binding. For all the assays, the nucleic acids obtained from samples were previously subjected to isothermal amplification with the recombinase polymerase amplification (RPA) method and the subsequent T7 transcription of the RPA amplicons. Finally, the detection of nucleic acids of Y. ruckeri was by means of a reporter signal released by the Cas13a collateral RNA cleavage triggered upon target recognition, measured by fluorescence- or lateral-flow-based readouts. This CRISPR/Cas13a-based assay was able to specifically detect both DNA and sRNAs from the Y. ruckeri samples, and the sensitivity was comparable to that obtained with qPCR analysis, highlighting the potential applicability of this CRISPR/Cas13a-based assay for fish pathogen surveillance
The RNA Chaperone Hfq Participates in Persistence to Multiple Antibiotics in the Fish Pathogen Yersinia ruckeri
Yersinia ruckeri causes outbreaks of enteric redmouth disease in salmon aquaculture all over the world. The transient antibiotic tolerance exhibited by bacterial persisters is commonly thought to be responsible for outbreaks; however, the molecular factors underlying this behavior have not been explored in Y. ruckeri. In this study, we investigated the participation of the RNA chaperone Hfq from Y. ruckeri in antibiotic persistence. Cultures of the hfq-knockout mutant (Δhfq) exhibited faster replication, increased ATP levels and a more reductive environment than the wild type. The growth curves of bacteria exposed to sublethal concentrations of ampicillin, oxolinic acid, ciprofloxacin and polymyxin B revealed a greater susceptibility for the Δhfq strain. The time-kill curves of bacteria treated with the antibiotics mentioned above and florfenicol, using inoculums from exponential, stationary and biofilm cultures, demonstrated that the Δhfq strain has significant defects in persister cells production. To shed more light on the role of Hfq in antibiotic persistence, we analyzed its dependence on the (p)ppGpp synthetase RelA by determining the persister cells production in the absence of the relA gene. The ΔrelA and ΔrelAΔhfq strains displayed similar defects in persister cells formation, but higher than Δhfq strain. Similarly, stationary cultures of the ΔrelA and ΔrelAΔhfq strains exhibited comparable levels of ATP but higher than that of the Δhfq strain, indicating that relA is epistatic over hfq. Taken together, our findings provide valuable information on antibiotic persistence in Y. ruckeri, shedding light on the participation of Hfq in the persistence phenomenon
Type IV secretion systems diversity in the Acidithiobacillus genus
Dispersal between genomes of certain mobile genetic elements and their gene cargo depends on conjugative type IV secretion systems. In this work, variants of these nanomachines, tra and trb, have been profiled in publicly available genomes of the genus Acidithiobacillus and in a set of relevant strains. Our analyses show that the trb system is of broad distribution, being present in most of the strains analyzed. In turn, the tra type is present in fewer strains of A. ferrooxidans, A. ferrivorans, A. ferriphilus and A. thiooxidans, and generally correlates with the presence of larger ICE in the respective genomes. Herein, sequence conservation, genomic context, integration site and synteny analyses are performed to infer functionality of the T4SS systems of the acidithiobacilli
A DNA segment encoding the anticodon stem/loop of tRNA determines the specific recombination of integrative-conjugative elements in <i>Acidithiobacillus</i> species
<p>Horizontal gene transfer is crucial for the adaptation of microorganisms to environmental cues. The acidophilic, bioleaching bacterium <i>Acidithiobacillus ferrooxidans</i> encodes an integrative-conjugative genetic element (ICE<i>Afe1</i>) inserted in the gene encoding a tRNA<sup>Ala</sup>. This genetic element is actively excised from the chromosome upon induction of DNA damage. A similar genetic element (ICE<i>Aca<sub>TY</sub>.2</i>) is also found in an equivalent position in the genome of <i>Acidithiobacillus caldus</i>. The local genomic context of both mobile genetic elements is highly syntenous and the cognate integrases are well conserved. By means of site directed mutagenesis, target site deletions and <i>in vivo</i> integrations assays in the heterologous model <i>Escherichia coli</i>, we assessed the target sequence requirements for site-specific recombination to be catalyzed by these integrases. We determined that each enzyme recognizes a specific small DNA segment encoding the anticodon stem/loop of the tRNA as target site and that specific positions in these regions are well conserved in the target <i>attB</i> sites of orthologous integrases. Also, we demonstrate that the local genetic context of the target sequence is not relevant for the integration to take place. These findings shed new light on the mechanism of site-specific integration of integrative-conjugative elements in members of <i>Acidithiobacillus</i> genus.</p