149 research outputs found

    Podoplanin drives dedifferentiation and amoeboid invasion of melanoma

    Get PDF
    Melanoma is an aggressive skin cancer developing from melanocytes, frequently resulting in metastatic disease. Melanoma cells utilize amoeboid migration as mode of local invasion. Amoeboid invasion is characterized by rounded cell morphology and high actomyosin contractility driven by Rho GTPase signalling. Migrastatic drugs targeting actin polymerization and contractility are therefore a promising treatment option for metastatic melanoma. To predict amoeboid invasion and metastatic potential, biomarkers functionally linked to contractility pathways are needed. The glycoprotein podoplanin drives actomyosin contractility in lymphoid fibroblasts and is overexpressed in many cancers. We show that podoplanin enhances amoeboid invasion in melanoma. Podoplanin expression in murine melanoma drives rounded cell morphology, increasing motility, and invasion in vivo. Podoplanin expression is increased in a subset of dedifferentiated human melanoma, and in vitro is sufficient to upregulate melanoma-associated marker Pou3f2/Brn2. Together, our data define podoplanin as a functional biomarker for dedifferentiated invasive melanoma and a promising migrastatic therapeutic target

    The role of clathrin in post-golgi trafficking in toxoplasma gondii

    Get PDF
    Apicomplexan parasites are single eukaryotic cells with a highly polarised secretory system that contains unique secretory organelles (micronemes and rhoptries) that are required for host cell invasion. In contrast, the role of the endosomal system is poorly understood in these parasites. With many typical endocytic factors missing, we speculated that endocytosis depends exclusively on a clathrin-mediated mechanism. Intriguingly, in Toxoplasma gondii we were only able to observe the endogenous clathrin heavy chain 1 (CHC1) at the Golgi, but not at the parasite surface. For the functional characterisation of Toxoplasma gondii CHC1 we generated parasite mutants conditionally expressing the dominant negative clathrin Hub fragment and demonstrate that CHC1 is essential for vesicle formation at the trans-Golgi network. Consequently, the functional ablation of CHC1 results in Golgi aberrations, a block in the biogenesis of the unique secretory microneme and rhoptry organelles, and of the pellicle. However, we found no morphological evidence for clathrin mediating endocytosis in these parasites and speculate that they remodelled their vesicular trafficking system to adapt to an intracellular lifestyle

    Low-Energy Signals from Kinetic Mixing with a Warped Abelian Hidden Sector

    Full text link
    We investigate the detailed phenomenology of a light Abelian hidden sector in the Randall-Sundrum framework. Relative to other works with light hidden sectors, the main new feature is a tower of hidden Kaluza-Klein vectors that kinetically mix with the Standard Model photon and Z. We investigate the decay properties of the hidden sector fields in some detail, and develop an approach for calculating processes initiated on the ultraviolet brane of a warped space with large injection momentum relative to the infrared scale. Using these results, we determine the detailed bounds on the light warped hidden sector from precision electroweak measurements and low-energy experiments. We find viable regions of parameter space that lead to significant production rates for several of the hidden Kaluza-Klein vectors in meson factories and fixed-target experiments. This offers the possibility of exploring the structure of an extra spacetime dimension with lower-energy probes.Comment: (1+32) Pages, 13 Figures. v2: JHEP version (minor modifications, results unchanged

    Clathrin Is Spindle-Associated but Not Essential for Mitosis

    Get PDF
    Clathrin is a multimeric protein involved in vesicle coat assembly. Recently clathrin distribution was reported to change during the cell cycle and was found to associate with the mitotic spindle. Here we test whether the recruitment of clathrin to the spindle is indicative of a critical functional contribution to mitosis.Previously a chicken pre-B lymphoma cell line (DKO-R) was developed in which the endogenous clathrin heavy chain alleles were replaced with the human clathrin heavy chain under the control of a tetracycline-regulatable promoter. Receptor-mediated and fluid-phase endocytosis were significantly inhibited in this line following clathrin knockout, and we used this to explore the significance of clathrin heavy chain expression for cell cycle progression. We confirmed using confocal microscopy that clathrin colocalised with tubulin at mitotic spindles. Using a propidium iodide flow cytometric assay we found no statistical difference in the cell cycle distribution of the knockout cells versus the wild-type. Additionally, we showed that the ploidy and the recovery kinetics following cell cycle arrest with nocodazole were unchanged by repressing clathrin heavy chain expression.We conclude that the association of clathrin with the mitotic spindle and the contribution of clathrin to endocytosis are evolutionarily conserved. However we find that the contribution of clathrin to mitosis is less robust and dependent on cellular context. In other cell-lines silencing RNA has been used by others to knockdown clathrin expression resulting in an increase in the mitotic index of the cells. We show an effect on the G2/M phase population of clathrin knockdown in HEK293 cells but show that repressing clathrin expression in the DKO-R cell-line has no effect on the size of this population. Consequently this work highlights the need for a more detailed molecular understanding of the recruitment and function of clathrin at the spindle, since the localisation but not the impact of clathrin on mitosis appears to be robust in plants, mammalian and chicken B-cells

    Farnesoid X Receptor Induces Murine Scavenger Receptor Class B Type I via Intron Binding

    Get PDF
    Farnesoid X receptor (FXR) is a nuclear receptor and a key regulator of liver cholesterol and triglyceride homeostasis. Scavenger receptor class B type I (SR-BI) is critical for reverse cholesterol transport (RCT) by transporting high-density lipoprotein (HDL) into liver. FXR induces SR-BI, however, the underlying molecular mechanism of this induction is not known. The current study confirmed induction of SR-BI mRNA by activated FXR in mouse livers, a human hepatoma cell line, and primary human hepatocytes. Genome-wide FXR binding analysis in mouse livers identified 4 putative FXR response elements in the form of inverse repeat separated by one nucleotide (IR1) at the first intron and 1 IR1 at the downstream of the mouse Sr-bi gene. ChIP-qPCR analysis revealed FXR binding to only the intronic IR1s, but not the downstream one. Luciferase assays and site-directed mutagenesis further showed that 3 out of 4 IR1s were able to activate gene transcription. A 16-week high-fat diet (HFD) feeding in mice increased hepatic Sr-bi gene expression in a FXR-dependent manner. In addition, FXR bound to the 3 bona fide IR1s in vivo, which was increased following HFD feeding. Serum total and HDL cholesterol levels were increased in FXR knockout mice fed the HFD, compared to wild-type mice. In conclusion, the Sr-bi/SR-BI gene is confirmed as a FXR target gene in both mice and humans, and at least in mice, induction of Sr-bi by FXR is via binding to intronic IR1s. This study suggests that FXR may serve as a promising molecular target for increasing reverse cholesterol transport

    NGTS-13b: A hot 4.8 Jupiter-mass planet transiting a subgiant star

    Get PDF
    We report the discovery of the massive hot Jupiter NGTS-13b by the Next Generation Transit Survey (NGTS). The V = 12.7 host star is likely in the subgiant evolutionary phase with log g∗_{*} = 4.04 ±\pm 0.05, Teff_{eff} = 5819 ±\pm 73 K, M∗_{*} = 1.30−0.18+0.11^{+0.11}_{-0.18} M⊙_{\odot}, and R∗_{*} = 1.79 ±\pm 0.06 R⊙_{\odot}. NGTS detected a transiting planet with a period of P = 4.12 days around the star, which was later validated with the Transiting Exoplanet Survey Satellite (TESS; TIC 454069765). We confirm the planet using radial velocities from the CORALIE spectrograph. Using NGTS and TESS full-frame image photometry combined with CORALIE radial velocities we determine NGTS-13b to have a radius of RP_{P} = 1.142 ±\pm 0.046 RJup_{Jup}, mass of MP_{P} = 4.84 ±\pm 0.44 MJup_{Jup} and eccentricity e = 0.086 ±\pm 0.034. Some previous studies suggest that ∼\sim4 MJup_{Jup} may be a border between two separate formation scenarios (e.g., core accretion and disk instability) and that massive giant planets share similar formation mechanisms as lower-mass brown dwarfs. NGTS-13b is just above 4 MJup_{Jup} making it an important addition to the statistical sample needed to understand the differences between various classes of substellar companions. The high metallicity, [Fe/H] = 0.25 ±\pm 0.17, of NGTS-13 does not support previous suggestions that massive giants are found preferentially around lower metallicity host stars, but NGTS-13b does support findings that more massive and evolved hosts may have a higher occurrence of close-in massive planets than lower-mass unevolved stars

    NGTS discovery of a highly inflated Saturn-mass planet and a highly irradiated hot Jupiter: NGTS-26 b and NGTS-27 b

    Get PDF
    We report the discovery of two new transiting giant exoplanets NGTS-26 b and NGTS-27 b by the Next Generation Transit Survey (NGTS). NGTS-26 b orbits around a G6-type main sequence star every 4.52 days. It has a mass of 0.29-0.06+0.07 MJup and a radius of 1.33-0.05+0.06 RJup making it a Saturn-mass planet with a highly inflated radius. NGTS-27 b orbits around a slightly evolved G3-type star every 3.37 days. It has a mass of 0.59-0.07+0.10 MJup and a radius of 1.40±0.04 RJup, making it a relatively standard hot Jupiter. The transits of these two planetary systems were re-observed and confirmed in photometry by the SAAO 1.0-m telescope, 1.2-m Euler Swiss telescope as well as the TESS spacecraft, and their masses were derived spectroscopically by the CORALIE, FEROS and HARPS spectrographs. Both giant exoplanets are highly irradiated by their host stars and present an anomalously inflated radius, especially NGTS-26 b which is one of the largest objects among peers of similar mass

    NGTS-11 b (TOI-1847 b): A Transiting Warm Saturn Recovered from a TESS Single-transit Event

    Get PDF
    We report the discovery of NGTS-11 b (=TOI-1847 b), a transiting Saturn in a 35.46-day orbit around a mid K-type star (Teff=5050 K). We initially identified the system from a single-transit event in a TESS full-frame image light-curve. Following seventy-nine nights of photometric monitoring with an NGTS telescope, we observed a second full transit of NGTS-11 b approximately one year after the TESS single-transit event. The NGTS transit confirmed the parameters of the transit signal and restricted the orbital period to a set of 13 discrete periods. We combined our transit detections with precise radial velocity measurements to determine the true orbital period and measure the mass of the planet. We find NGTS-11 b has a radius of 0.817+0.028-0.032 RJR_J, a mass of 0.344+0.092-0.073 MJM_J, and an equilibrium temperature of just 435+34-32 K, making it one of the coolest known transiting gas giants. NGTS-11 b is the first exoplanet to be discovered after being initially identified as a TESS single-transit event, and its discovery highlights the power of intense photometric monitoring in recovering longer-period transiting exoplanets from single-transit events

    RNA Interference Mediated Inhibition of Dengue Virus Multiplication and Entry in HepG2 Cells

    Get PDF
    Background: Dengue virus-host cell interaction initiates when the virus binds to the attachment receptors followed by endocytic internalization of the virus particle. Successful entry into the cell is necessary for infection initiation. Currently, there is no protective vaccine or antiviral treatment for dengue infection. Targeting the viral entry pathway has become an attractive therapeutic strategy to block infection. This study aimed to investigate the effect of silencing the GRP78 and clathrin-mediated endocytosis on dengue virus entry and multiplication into HepG2 cells. Methodology/Principal Findings: HepG2 cells were transfected using specific siRNAs to silence the cellular surface receptor (GRP78) and clathrin-mediated endocytosis pathway. Gene expression analysis showed a marked down-regulation of the targeted genes (87.2%, 90.3%, and 87.8 % for GRP78, CLTC, and DNM2 respectively) in transfected HepG2 cells when measured by RT-qPCR. Intracellular and extracellular viral RNA loads were quantified by RT-qPCR to investigate the effect of silencing the attachment receptor and clathrin-mediated endocytosis on dengue virus entry. Silenced cells showed a significant reduction of intracellular (92.4%) and extracellular viral RNA load (71.4%) compared to non-silenced cells. Flow cytometry analysis showed a marked reduction of infected cells (89.7%) in silenced HepG2 cells compared to non-silenced cells. Furthermore, the ability to generate infectious virions using the plaque assay was reduced 1.07 log in silenced HepG2 cells
    • …
    corecore