216 research outputs found

    Comparative genomic mapping of uncharacterized canine retinal ESTs to identify novel candidate genes for hereditary retinal disorders

    Get PDF
    Purpose: To identify the genomic location of previously uncharacterized canine retina-expressed expressed sequence tags (ESTs), and thus identify potential candidate genes for heritable retinal disorders. Methods: A set of over 500 retinal canine ESTs were mapped onto the canine genome using the RHDF ₅₀₀₀₋₂ radiation hybrid (RH) panel, and the resulting map positions were compared to their respective localization in the CanFam2 assembly of the canine genome sequence. Results: Unique map positions could be assigned for 99% of the mapped clones, of which only 29% showed significant homology to known RefSeq sequences. A comparison between RH map and sequence assembly indicated some areas of discrepancy. Retinal expressed genes were not concentrated in particular areas of the canine genome, and also were located on the canine Y chromosome (CFAY). Several of the EST clones were located within areas of conserved synteny to human retinal disease loci. Conclusions: RH mapping of canine retinal ESTs provides insight into the location of potential candidate genes for hereditary retinal disorders, and, by comparison with the assembled canine genome sequence, highlights inconsistencies with the current assembly. Regions of conserved synteny between the canine and the human genomes allow this information to be extrapolated to identify potential positional candidate genes for mapped human retinal disorders. Furthermore, these ESTs can help identify novel or uncharacterized genes of significance for better understanding of retinal morphology, physiology, and pathology.10 page(s

    Canine and Human Visual Cortex Intact and Responsive Despite Early Retinal Blindness from RPE65 Mutation

    Get PDF
    The study by Samuel Jacobson and colleagues suggests that retinal gene therapy can improve retinal, visual pathway, and visual cortex responses to light stimulation, even after prolonged periods of blindness and in congenitally blind patients

    Canine and Human Visual Cortex Intact and Responsive Despite Early Retinal Blindness from \u3cem\u3eRPE65\u3c/em\u3e Mutation

    Get PDF
    Background RPE65 is an essential molecule in the retinoid-visual cycle, and RPE65 gene mutations cause the congenital human blindness known as Leber congenital amaurosis (LCA). Somatic gene therapy delivered to the retina of blind dogs with an RPE65 mutation dramatically restores retinal physiology and has sparked international interest in human treatment trials for this incurable disease. An unanswered question is how the visual cortex responds after prolonged sensory deprivation from retinal dysfunction. We therefore studied the cortex of RPE65-mutant dogs before and after retinal gene therapy. Then, we inquired whether there is visual pathway integrity and responsivity in adult humans with LCA due to RPE65 mutations (RPE65-LCA). Methods and Findings RPE65-mutant dogs were studied with fMRI. Prior to therapy, retinal and subcortical responses to light were markedly diminished, and there were minimal cortical responses within the primary visual areas of the lateral gyrus (activation amplitude mean ± standard deviation [SD] = 0.07% ± 0.06% and volume = 1.3 ± 0.6 cm3). Following therapy, retinal and subcortical response restoration was accompanied by increased amplitude (0.18% ± 0.06%) and volume (8.2 ± 0.8 cm3) of activation within the lateral gyrus (p \u3c 0.005 for both). Cortical recovery occurred rapidly (within a month of treatment) and was persistent (as long as 2.5 y after treatment). Recovery was present even when treatment was provided as late as 1–4 y of age. Human RPE65-LCA patients (ages 18–23 y) were studied with structural magnetic resonance imaging. Optic nerve diameter (3.2 ± 0.5 mm) was within the normal range (3.2 ± 0.3 mm), and occipital cortical white matter density as judged by voxel-based morphometry was slightly but significantly altered (1.3 SD below control average, p = 0.005). Functional magnetic resonance imaging in human RPE65-LCA patients revealed cortical responses with a markedly diminished activation volume (8.8 ± 1.2 cm3) compared to controls (29.7 ± 8.3 cm3, p \u3c 0.001) when stimulated with lower intensity light. Unexpectedly, cortical response volume (41.2 ± 11.1 cm3) was comparable to normal (48.8 ± 3.1 cm3, p = 0.2) with higher intensity light stimulation. Conclusions Visual cortical responses dramatically improve after retinal gene therapy in the canine model of RPE65-LCA. Human RPE65-LCA patients have preserved visual pathway anatomy and detectable cortical activation despite limited visual experience. Taken together, the results support the potential for human visual benefit from retinal therapies currently being aimed at restoring vision to the congenitally blind with genetic retinal disease

    Biology ideology and pastiche hegemony

    Get PDF
    As knowledge about the biological foundation of the modern patriarchal gender order is increasingly challenged within late-modern social worlds enclaves persist in which men and women can attempt to recreate understandings of the "natural" basis of sex difference. Within "Power Gym," male boxers were able to symbolize their bodies and behaviors in such a manner. The language and logic of popular scientific discourses authored and authorized notions of an "innate" manhood. The ability to instrumentally deploy one's manliness in symbolically legitimate ways could then be represented and emotionally experienced as a man's biological right and obligation. Through scripted performances of "mimetic" violence and self-bullying, the boxers were able to experience this discursive naturalness and carve out a masculinity-validating social enclave. As such, they accessed a "patriarchal dividend" by securing a local pastiche hegemony in which discourses surrounding men's natural place as physically and psychologically dominant remained largely uncontested. Through the reflexive appropriation of "science," within appropriate subcultural codes, these men could negotiate taboos and restrictions that are characteristic of late-modern social worlds. When considered in this way, the power of "scientific" truth claims to explain and justify a certain level of violence, aggression, and behaviors coded as masculine, comes to the fore

    DNA testing and domestic dogs

    Get PDF
    There are currently about 80 different DNA tests available for mutations that are associated with inherited disease in the domestic dog, and as the tools available with which to dissect the canine genome become increasingly sophisticated, this number can be expected to rise dramatically over the next few years. With unrelenting media pressure focused firmly on the health of the purebred domestic dog, veterinarians and dog breeders are turning increasingly to DNA tests to ensure the health of their dogs. It is ultimately the responsibility of the scientists who identify disease-associated genetic variants to make sensible choices about which discoveries are appropriate to develop into commercially available DNA tests for the lay dog breeder, who needs to balance the need to improve the genetic health of their breed with the need to maintain genetic diversity. This review discusses some of the factors that should be considered along the route from mutation discovery to DNA test and some representative examples of DNA tests currently available

    Poly(β-Amino Ester)-Nanoparticle Mediated Transfection of Retinal Pigment Epithelial Cells In Vitro and In Vivo

    Get PDF
    A variety of genetic diseases in the retina, including retinitis pigmentosa and leber congenital amaurosis, might be excellent targets for gene delivery as treatment. A major challenge in non-viral gene delivery remains finding a safe and effective delivery system. Poly(beta-amino ester)s (PBAEs) have shown great potential as gene delivery reagents because they are easily synthesized and they transfect a wide variety of cell types with high efficacy in vitro. We synthesized a combinatorial library of PBAEs and evaluated them for transfection efficacy and toxicity in retinal pigment epithelial (ARPE-19) cells to identify lead polymer structures and transfection formulations. Our optimal polymer (B5-S5-E7 at 60 w/w polymer∶DNA ratio) transfected ARPE-19 cells with 44±5% transfection efficacy, significantly higher than with optimized formulations of leading commercially available reagents Lipofectamine 2000 (26±7%) and X-tremeGENE HP DNA (22±6%); (p<0.001 for both). Ten formulations exceeded 30% transfection efficacy. This high non-viral efficacy was achieved with comparable cytotoxicity (23±6%) to controls; optimized formulations of Lipofectamine 2000 and X-tremeGENE HP DNA showed 15±3% and 32±9% toxicity respectively (p>0.05 for both). Our optimal polymer was also significantly better than a gold standard polymeric transfection reagent, branched 25 kDa polyethyleneimine (PEI), which achieved only 8±1% transfection efficacy with 25±6% cytotoxicity. Subretinal injections using lyophilized GFP-PBAE nanoparticles resulted in 1.1±1×103-fold and 1.5±0.7×103-fold increased GFP expression in the retinal pigment epithelium (RPE)/choroid and neural retina respectively, compared to injection of DNA alone (p = 0.003 for RPE/choroid, p<0.001 for neural retina). The successful transfection of the RPE in vivo suggests that these nanoparticles could be used to study a number of genetic diseases in the laboratory with the potential to treat debilitating eye diseases

    Understanding hereditary diseases using the dog and human as companion model systems

    Get PDF
    Animal models are requisite for genetic dissection of, and improved treatment regimens for, human hereditary diseases. While several animals have been used in academic and industrial research, the primary model for dissection of hereditary diseases has been the many strains of the laboratory mouse. However, given its greater (than the mouse) genetic similarity to the human, high number of naturally occurring hereditary diseases, unique population structure, and the availability of the complete genome sequence, the purebred dog has emerged as a powerful model for study of diseases. The major advantage the dog provides is that it is afflicted with approximately 450 hereditary diseases, about half of which have remarkable clinical similarities to corresponding diseases of the human. In addition, humankind has a strong desire to cure diseases of the dog so these two facts make the dog an ideal clinical and genetic model. This review highlights several of these shared hereditary diseases. Specifically, the canine models discussed herein have played important roles in identification of causative genes and/or have been utilized in novel therapeutic approaches of interest to the dog and human

    Nr2e3 is a Genetic Modifier That Rescues Retinal Degeneration and Promotes Homeostasis in Multiple Models of Retinitis Pigmentosa

    Get PDF
    Recent advances in viral vector engineering, as well as an increased understanding of the cellular and molecular mechanism of retinal diseases, have led to the development of novel gene therapy approaches. Furthermore, ease of accessibility and ocular immune privilege makes the retina an ideal target for gene therapies. In this study, the nuclear hormone receptor gene Nr2e3 was evaluated for efficacy as broad-spectrum therapy to attenuate early to intermediate stages of retinal degeneration in five unique mouse models of retinitis pigmentosa (RP). RP is a group of heterogenic inherited retinal diseases associated with over 150 gene mutations, affecting over 1.5 million individuals worldwide. RP varies in age of onset, severity, and rate of progression. In addition, ~40% of RP patients cannot be genetically diagnosed, confounding the ability to develop personalized RP therapies. Remarkably, Nr2e3 administered therapy resulted in reduced retinal degeneration as observed by increase in photoreceptor cells, improved electroretinogram, and a dramatic molecular reset of key transcription factors and associated gene networks. These therapeutic effects improved retinal homeostasis in diseased tissue. Results of this study provide evidence that Nr2e3 can serve as a broad-spectrum therapy to treat multiple forms of RP

    Unilateral congenital elongation of the cervical part of the internal carotid artery with kinking and looping: two case reports and review of the literature

    Get PDF
    Unilateral and bilateral variation in the course and elongation of the cervical (extracranial) part of the internal carotid artery (ICA) leading to its tortuosity, kinking and coiling or looping is not a rare condition, which could be caused by both embryological and acquired factors. Patients with such variations may be asymptomatic in some cases; in others, they can develop cerebrovascular symptoms due to carotid stenosis affecting cerebral circulation. The risk of transient ischemic attacks in patients with carotid stenosis is high and its surgical correction is indicated for the prevention of ischemic stroke. Detection of developmental variations of the ICA and evaluation of its stenotic areas is very important for surgical interventions and involves specific diagnostic imaging techniques for vascular lesions including contrast arteriography, duplex ultrasonography and magnetic resonance angiography. Examination of obtained images in cases of unusual and complicated variations of vascular pattern of the ICA may lead to confusion in interpretation of data. Awareness about details and topographic anatomy of variations of the ICA may serve as a useful guide for both radiologists and vascular surgeons. It may help to prevent diagnostic errors, influence surgical tactics and interventional procedures and avoid complications during the head and neck surgery. Our present study was conducted with a purpose of updating data about developmental variations of the ICA. Dissections of the main neurovascular bundle of the head and neck were performed on a total 14 human adult cadavers (10 – Africans: 7 males & 3 females and 4 – East Indians: all males). Two cases of unilateral congenital elongation of the cervical part of the ICA with kinking and looping and carotid stenoses were found only in African males. Here we present their detailed case reports with review of the literature

    Ocular Delivery of Compacted DNA-Nanoparticles Does Not Elicit Toxicity in the Mouse Retina

    Get PDF
    Subretinal delivery of polyethylene glycol-substituted lysine peptide (CK30PEG)-compacted DNA nanoparticles results in efficient gene expression in retinal cells. This work evaluates the ocular safety of compacted DNA nanoparticles. CK30PEG-compacted nanoparticles containing an EGFP expression plasmid were subretinally injected in adult mice (1 µl at 0.3, 1.0 and 3.0 µg/µl). Retinas were examined for signs of inflammation at 1, 2, 4 and 7 days post-injection. Neither infiltration of polymorphonuclear neutrophils or lymphocytes was detected in retinas. In addition, elevation of macrophage marker F4/80 or myeloid marker myeloperoxidase was not detected in the injected eyes. The chemokine KC mRNA increased 3–4 fold in eyes injected with either nanoparticles or saline at 1 day post-injection, but returned to control levels at 2 days post-injection. No elevation of KC protein was observed in these mice. The monocyte chemotactic protein-1, increased 3–4 fold at 1 day post-injection for both nanoparticle and saline injected eyes, but also returned to control levels at 2 days. No elevations of tumor necrosis factor alpha mRNA or protein were detected. These investigations show no signs of local inflammatory responses associated with subretinal injection of compacted DNA nanoparticles, indicating that the retina may be a suitable target for clinical nanoparticle-based interventions
    corecore